論文の概要: Trotter errors in digital adiabatic quantum simulation of quantum
$\mathbb{Z}_2$ lattice gauge theory
- arxiv url: http://arxiv.org/abs/2009.00247v1
- Date: Tue, 1 Sep 2020 05:56:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-04 03:30:25.000084
- Title: Trotter errors in digital adiabatic quantum simulation of quantum
$\mathbb{Z}_2$ lattice gauge theory
- Title(参考訳): 量子$\mathbb{z}_2$格子ゲージ理論のデジタル断熱量子シミュレーションにおけるトローター誤差
- Authors: Xiaopeng Cui, Yu Shi
- Abstract要約: トロッター分解はデジタル量子シミュレーションの基礎である。
非対称および対称分解は、2+1$次元量子$mathbbZ$格子ゲージ理論のデジタル断熱量子シミュレーションのGPU実験で用いられる。
- 参考スコア(独自算出の注目度): 9.83302372715731
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trotter decomposition is the basis of the digital quantum simulation.
Asymmetric and symmetric decompositions are used in our GPU demonstration of
the digital adiabatic quantum simulations of $2+1$ dimensional quantum
$\mathbb{Z}_2$ lattice gauge theory. The actual errors in Trotter
decompositions are investigated as functions of the coupling parameter and the
number of Trotter substeps in each step of the variation of coupling parameter.
The relative error of energy is shown to be closely related to the Trotter
error usually defined defined in terms of the evolution operators. They are
much smaller than the order-of-magnitude estimation. The error in the symmetric
decomposition is much smaller than that in the asymmetric decomposition. The
features of the Trotter errors obtained here are useful in the experimental
implementation of digital quantum simulation and its numerical demonstration.
- Abstract(参考訳): トロッター分解はデジタル量子シミュレーションの基礎である。
非対称分解と対称分解は、デジタル断熱量子シミュレーションのgpuによる2+1ドルの量子$\mathbb{z}_2$格子ゲージ理論のデモンストレーションに使われている。
トロータ分解における実際の誤差を結合パラメータの変動の各ステップにおける結合パラメータとトロータサブステップの数の関数として検討した。
エネルギーの相対誤差は、通常進化作用素の項で定義されるトロッター誤差と密接に関連していることが示される。
それらは、桁数推定よりもずっと小さい。
対称分解の誤差は非対称分解の誤差よりもはるかに小さい。
ここで得られたトロッター誤差の特徴は、ディジタル量子シミュレーションの実験的実装と数値シミュレーションに有用である。
関連論文リスト
- Optimal-order Trotter-Suzuki decomposition for quantum simulation on noisy quantum computers [0.05343200742664294]
ゲート誤差が典型値と比較して約1桁減少すると,高次トロッタライゼーションが有利となることを示す。
この形態のトロッター化は、全体のシミュレーション誤差の最小値となる。
論文 参考訳(メタデータ) (2024-05-02T09:48:52Z) - Exotic Symmetry Breaking Properties of Self-Dual Fracton Spin Models [4.467896011825295]
2つの自己双対フラクトンスピンモデルの基底状態特性と相転移について検討する。
両モデルとも, 異常な$L-(D-1)$スケーリングで, 強い1次位相遷移を経験することを示す。
我々の研究は、サブ次元対称性の破れについての新しい理解を提供し、チェッカーボードとハアの符号の量子エラー補正特性を研究するための重要なステップとなる。
論文 参考訳(メタデータ) (2023-11-18T13:12:14Z) - Quantum Electronic Circuits for Multicritical Ising Models [0.0]
多臨界イジングモデルとその摂動は統計力学のパラダイムモデルである。
量子回路はジョセフソン接合を$cos(nphi + delta_n)$ potential と $1leq nleq p$ と $delta_nin[-pi,pi]$ で構成する。
イジングモデルと三臨界イジングモデルの格子モデルを密度行列再正規化群法を用いて数値解析した。
論文 参考訳(メタデータ) (2023-06-07T11:24:43Z) - Self-healing of Trotter error in digital adiabatic state preparation [52.77024349608834]
完全断熱進化の1次トロッター化は、一般的なトロッター誤差境界から期待される$mathcal O(T-2 delta t2)$の代わりに$mathcal O(T-2 delta t2)$にスケールする累積不整性を持つことを示す。
この結果は自己修復機構を示唆し、T$の増大にもかかわらず、固定$$delta t$のデジタル化進化の不完全性が、多種多様なハミルトニアンに対して依然として減少している理由を説明する。
論文 参考訳(メタデータ) (2022-09-13T18:05:07Z) - Quantum Error Correction with Gauge Symmetries [69.02115180674885]
Lattice Gauge Theories (LGT) の量子シミュレーションは、物理セクターと非物理セクターの両方を含む拡大されたヒルベルト空間上でしばしば定式化される。
本稿では,位相フリップ誤り訂正符号とガウス法則を組み合わせることで,そのような冗長性を利用する簡易なフォールトトレラント法を提案する。
論文 参考訳(メタデータ) (2021-12-09T19:29:34Z) - Near-optimal covariant quantum error-correcting codes from random
unitaries with symmetries [1.2183405753834557]
我々は、$U(1)$と$SU(d)$対称性の最も重要なケースを解析的に研究する。
両対称性群に対して、Haar-random対称ユニタリによって生成される共変符号の誤差は、通常、消去ノイズに対する平均ケース距離と最悪のケース距離の両方で$O(n-1)$とスケールする。
論文 参考訳(メタデータ) (2021-12-02T18:46:34Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
変分アダバティックゲージ変換(VAGT)を導入する。
VAGTは、現在の量子コンピュータを用いてユニタリ回路の変動パラメータを学習できる非摂動型ハイブリッド量子アルゴリズムである。
VAGTの精度は、RigettiおよびIonQ量子コンピュータ上でのシミュレーションと同様に、トラフ数値シミュレーションで検証される。
論文 参考訳(メタデータ) (2021-11-16T20:50:08Z) - Hamiltonian simulation with random inputs [74.82351543483588]
ランダム初期状態を持つハミルトンシミュレーションの平均ケース性能の理論
数値的な証拠は、この理論がコンクリート模型の平均誤差を正確に特徴づけていることを示唆している。
論文 参考訳(メタデータ) (2021-11-08T19:08:42Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
時間依存ハミルトニアンの下でのユニタリ進化は、量子ハードウェアにおけるシミュレーションの重要な構成要素である。
本稿では、トロッターステップを1ブロックの量子ゲートに圧縮するアルゴリズムを提案する。
この結果、ハミルトニアンのある種のクラスに対する固定深度時間進化がもたらされる。
論文 参考訳(メタデータ) (2021-08-06T19:38:01Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
NISQとフォールトトレラントの両方の設定で格子シュウィンガーモデルをシミュレートするために、スケーラブルで明示的なデジタル量子アルゴリズムを提供する。
格子単位において、結合定数$x-1/2$と電場カットオフ$x-1/2Lambda$を持つ$N/2$物理サイト上のシュウィンガーモデルを求める。
NISQと耐故障性の両方でコストがかかるオブザーバブルを、単純なオブザーバブルとして推定し、平均ペア密度を推定する。
論文 参考訳(メタデータ) (2020-02-25T19:18:36Z) - Term Grouping and Travelling Salesperson for Digital Quantum Simulation [6.945601123742983]
ハミルトニアンの時間発展を評価する量子力学のデジタルシミュレーションは、当初提案されていた量子コンピューティングの応用である。
ハミルトニアンの完全な第2量子化形式をエミュレートするために必要な多数の量子ゲートは、そのようなアプローチを短期デバイスには適さない。
アルゴリズムと物理の誤りを同時に軽減する新しい項順序付け戦略であるmax-commute-tspを提案する。
論文 参考訳(メタデータ) (2020-01-16T18:33:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。