論文の概要: Quantum Long Short-Term Memory
- arxiv url: http://arxiv.org/abs/2009.01783v1
- Date: Thu, 3 Sep 2020 16:41:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-22 08:09:48.240019
- Title: Quantum Long Short-Term Memory
- Title(参考訳): 量子長短期記憶
- Authors: Samuel Yen-Chi Chen, Shinjae Yoo, and Yao-Lung L. Fang
- Abstract要約: LSTM(Long Short-term memory)は、シーケンスおよび時間依存性データモデリングのためのリカレントニューラルネットワーク(RNN)である。
本稿では,QLSTMを疑似化したLSTMのハイブリッド量子古典モデルを提案する。
我々の研究は、ノイズの多い中間スケール量子(NISQ)デバイス上でのシーケンスモデリングのための機械学習アルゴリズムの実装への道を開いた。
- 参考スコア(独自算出の注目度): 3.675884635364471
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long short-term memory (LSTM) is a kind of recurrent neural networks (RNN)
for sequence and temporal dependency data modeling and its effectiveness has
been extensively established. In this work, we propose a hybrid
quantum-classical model of LSTM, which we dub QLSTM. We demonstrate that the
proposed model successfully learns several kinds of temporal data. In
particular, we show that for certain testing cases, this quantum version of
LSTM converges faster, or equivalently, reaches a better accuracy, than its
classical counterpart. Due to the variational nature of our approach, the
requirements on qubit counts and circuit depth are eased, and our work thus
paves the way toward implementing machine learning algorithms for sequence
modeling on noisy intermediate-scale quantum (NISQ) devices.
- Abstract(参考訳): LSTM(Long Short-term memory)は、シーケンスおよび時間依存性データモデリングのためのリカレントニューラルネットワークの一種であり、その効果が広く確立されている。
そこで本研究では,QLSTMをダブしたLSTMの量子古典モデルを提案する。
提案手法は,複数種類の時間データを学習できることを示す。
特に、あるテストケースにおいて、このLSTMの量子バージョンは、従来のものよりも早く、または同等に、より精度良く収束することを示す。
提案手法の変動特性により、量子ビット数と回路深さの要件が緩和され、ノイズの多い中間スケール量子(NISQ)デバイス上でのシーケンスモデリングのための機械学習アルゴリズムの実装への道が開かれた。
関連論文リスト
- Quantum Kernel-Based Long Short-term Memory for Climate Time-Series Forecasting [0.24739484546803336]
本稿では,量子カーネル法を従来のLSTMアーキテクチャに統合したQK-LSTM(Quantum Kernel-Based Long short-Memory)ネットワークを提案する。
QK-LSTMは、トレーニング可能なパラメータが少ない複雑な非線形依存と時間ダイナミクスをキャプチャする。
論文 参考訳(メタデータ) (2024-12-12T01:16:52Z) - Quantum Kernel-Based Long Short-term Memory [0.30723404270319693]
本稿では,Quantum Kernel-Based Long Short-Term Memory (QK-LSTM) ネットワークを導入する。
この量子化アーキテクチャは、効率的な収束、ロバストな損失最小化、モデルコンパクト性を示す。
ベンチマークの結果,QK-LSTMは従来のLSTMモデルと同等の性能を示すが,パラメータは少ない。
論文 参考訳(メタデータ) (2024-11-20T11:39:30Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Unlocking the Power of LSTM for Long Term Time Series Forecasting [27.245021350821638]
本稿では, sLSTM 上に実装したP-sLSTM という単純なアルゴリズムを提案する。
これらの改良により、TSFにおけるsLSTMの性能が大幅に向上し、最先端の結果が得られた。
論文 参考訳(メタデータ) (2024-08-19T13:59:26Z) - Learning to Program Variational Quantum Circuits with Fast Weights [3.6881738506505988]
本稿では,時間的あるいはシーケンシャルな学習課題に対する解決法として,QFWP(Quantum Fast Weight Programmers)を提案する。
提案したQFWPモデルは、量子リカレントニューラルネットワークの使用を必要とせずに、時間的依存関係の学習を実現する。
本研究では, 時系列予測とRLタスクにおいて, 提案したQFWPモデルの有効性を示す数値シミュレーションを行った。
論文 参考訳(メタデータ) (2024-02-27T18:53:18Z) - Federated Quantum Long Short-term Memory (FedQLSTM) [58.50321380769256]
量子フェデレーション学習(QFL)は、量子機械学習(QML)モデルを使用して、複数のクライアント間の協調学習を容易にする。
関数の近似に時間的データを利用するQFLフレームワークの開発に前向きな作業は行われていない。
量子長短期メモリ(QLSTM)モデルと時間データを統合する新しいQFLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-21T21:40:47Z) - Convolutional State Space Models for Long-Range Spatiotemporal Modeling [65.0993000439043]
ConvS5は、長距離時間モデリングのための効率的な変種である。
トランスフォーマーとConvNISTTMは、長い水平移動実験において、ConvLSTMより3倍速く、トランスフォーマーより400倍速くサンプルを生成する一方で、大幅に性能が向上した。
論文 参考訳(メタデータ) (2023-10-30T16:11:06Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
動的平均場理論(DMFT)は、ハバードモデルの局所グリーン関数をアンダーソン不純物のモデルにマッピングする。
不純物モデルを効率的に解くために、量子およびハイブリッド量子古典アルゴリズムが提案されている。
この研究は、ノイズの多いデジタル量子ハードウェアを用いたMott相転移の最初の計算を提示する。
論文 参考訳(メタデータ) (2021-12-10T17:32:15Z) - Simulation of Open Quantum Dynamics with Bootstrap-Based Long Short-Term
Memory Recurrent Neural Network [0.0]
ブートストラップ法はLSTM-NNの構成と予測に適用される。
ブートストラップに基づくLSTM-NNアプローチは、オープンシステムの長期量子力学を伝播する実用的で強力なツールである。
論文 参考訳(メタデータ) (2021-08-03T05:58:54Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。