論文の概要: Forecasting financial markets with semantic network analysis in the
COVID-19 crisis
- arxiv url: http://arxiv.org/abs/2009.04975v2
- Date: Mon, 30 Nov 2020 18:55:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 12:07:14.690573
- Title: Forecasting financial markets with semantic network analysis in the
COVID-19 crisis
- Title(参考訳): 新型コロナウイルス危機における意味ネットワーク分析による金融市場の予測
- Authors: A. Fronzetti Colladon, S. Grassi, F. Ravazzolo, F. Violante
- Abstract要約: インデックスは、テキストに現れる1つ以上の一般的な経済関連キーワードの重要性を評価するために、大量のニュースに適用される。
この指標は、その使用頻度と意味ネットワークの位置に基づいて、経済関連キーワードの重要性を評価する。
新型コロナウイルス危機を含む最近のサンプル期間において、イタリア株・債券市場のリターンとボラティリティを予測する指標を構築している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper uses a new textual data index for predicting stock market data.
The index is applied to a large set of news to evaluate the importance of one
or more general economic related keywords appearing in the text. The index
assesses the importance of the economic related keywords, based on their
frequency of use and semantic network position. We apply it to the Italian
press and construct indices to predict Italian stock and bond market returns
and volatilities in a recent sample period, including the COVID-19 crisis. The
evidence shows that the index captures the different phases of financial time
series well. Moreover, results indicate strong evidence of predictability for
bond market data, both returns and volatilities, short and long maturities, and
stock market volatility.
- Abstract(参考訳): 本稿では,ストックマーケットデータの予測に新たなテキストデータインデックスを用いる。
インデックスは、テキストに現れる1つ以上の一般的な経済関連キーワードの重要性を評価するために、大量のニュースに適用される。
この指標は、その使用頻度と意味ネットワークの位置に基づいて、経済関連キーワードの重要性を評価する。
我々は、イタリアの報道機関に適用し、新型コロナウイルス危機を含む最近のサンプル期間におけるイタリア株と債券市場のリターンとボラティリティを予測する指標を構築します。
その証拠は、この指数が金融時系列の異なるフェーズをうまく捉えていることを示している。
さらに、債券市場のデータ、リターンとボラティリティ、短い熟成と長い熟成、株式市場のボラティリティの予測可能性の強い証拠が示されている。
関連論文リスト
- ALERTA-Net: A Temporal Distance-Aware Recurrent Networks for Stock
Movement and Volatility Prediction [20.574163667057476]
我々は、株式市場予測の精度を高めるために、世論の豊かな情報源であるソーシャルメディアデータの力を活用している。
我々は、感情分析、マクロ経済指標、検索エンジンデータ、過去の価格をマルチアテンション深層学習モデルに組み込むアプローチを開拓した。
市場の動向とボラティリティの予測のために,私たちによって特別にキュレーションされたデータセットを用いて,提案モデルの最先端性能を示す。
論文 参考訳(メタデータ) (2023-10-28T13:31:39Z) - Predicting Financial Market Trends using Time Series Analysis and
Natural Language Processing [0.0]
この調査は、TeslaやAppleといった大手企業の株価を予測するためのツールとして、Twitterの感情の有効性を評価することを目的としている。
以上の結果から, 株価変動の主要な要因は, 肯定性, 否定性, 主観性であることが示唆された。
論文 参考訳(メタデータ) (2023-08-31T21:20:58Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
金融市場分析のための画期的な枠組みを提示する。
このアプローチは、投資家の期待を共同でモデル化し、潜伏する株価関係を自動的に掘り下げる最初の方法だ。
私たちのモデルは年率10%を超えるリターンを継続的に達成します。
論文 参考訳(メタデータ) (2023-06-01T01:36:51Z) - Research on the correlation between text emotion mining and stock market
based on deep learning [6.000327333763521]
本稿では,Bertモデルを用いて金融コーパスをトレーニングし,深セン株価指数を予測する。
その結果,BERTモデルを金融コーパスに適用することにより得られる感情特性は,株式市場の変動に反映できることがわかった。
論文 参考訳(メタデータ) (2022-05-09T12:51:16Z) - Graph-Based Learning for Stock Movement Prediction with Textual and
Relational Data [0.0]
ストックフォアキャスティングのためのマルチグラフリカレントネットワーク(MGRN)という新しいストックムーブメント予測フレームワークを提案する。
このアーキテクチャは、財務ニュースからのテキストの感情と、他の財務データから抽出された複数の関係情報を組み合わせることができる。
精度テストとSTOXX Europe 600指数の株価のトレーディングシミュレーションを通じて、我々のモデルが他のベンチマークよりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-07-22T21:57:18Z) - Temporal-Relational Hypergraph Tri-Attention Networks for Stock Trend
Prediction [45.74513775015998]
本稿では、エンドツーエンドの株価トレンド予測のための協調的時間関係モデリングフレームワークを提案する。
新しいハイパーグラフトリアテンションネットワーク(HGTAN)が提案され,ハイパーグラフ畳み込みネットワークが拡張された。
このようにして、HGTANは、在庫間の情報伝達におけるノード、ハイパーエッジ、ハイパーグラフの重要性を適応的に決定する。
論文 参考訳(メタデータ) (2021-07-22T02:16:09Z) - REST: Relational Event-driven Stock Trend Forecasting [76.08435590771357]
既存の手法の欠点に対処するために,rest(relational event-driven stock trend forecasting)フレームワークを提案する。
第1の欠点を是正するため,我々は,株価の文脈をモデル化し,異なる状況下での株価に対する事象情報の影響を学ぶことを提案する。
第2の欠点に対処するために,ストックグラフを構築し,関連する株からイベント情報の影響を伝達する新しい伝播層を設計する。
論文 参考訳(メタデータ) (2021-02-15T07:22:09Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
金融ニュースとツイートから抽出された感情とFTSE100の動きの関係を調べました。
ニュース見出しから得られた感情は、市場のリターンを予測するシグナルとして使われる可能性があるが、ボラティリティには当てはまらない。
我々は,新たな情報の到着に応じて,市場の変動を予測するための正確な分類器を開発した。
論文 参考訳(メタデータ) (2020-12-10T01:15:48Z) - Predictive intraday correlations in stable and volatile market
environments: Evidence from deep learning [2.741266294612776]
我々は、S&P500株間のラタグ相関を学習・活用するためにディープラーニングを適用し、安定市場と不安定市場のモデル行動を比較する。
以上の結果から,アキュラシーは有意でありながら,予測地平線が短いほど低下することが示唆された。
ポートフォリオマネージャのための調査ツールとしての現代金融理論と作業の適用性について論じる。
論文 参考訳(メタデータ) (2020-02-24T17:19:54Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
金融指標、株価、為替レートなどの複数の時系列は、市場が潜んでいる状態に依存しているため、強く結びついている。
金融時系列間の関係を多出力ガウスプロセスでモデル化することで学習することに注力する。
論文 参考訳(メタデータ) (2020-02-11T19:18:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。