Inferring Global Dynamics Using a Learning Machine
- URL: http://arxiv.org/abs/2009.13032v1
- Date: Mon, 28 Sep 2020 02:54:44 GMT
- Title: Inferring Global Dynamics Using a Learning Machine
- Authors: Hong Zhao
- Abstract summary: We show that by using a learning machine we can achieve such a goal to a certain extent.
It is found that following an appropriate training strategy that monotonously decreases the cost function, the learning machine in different training stage can mimic the system at different parameter set.
- Score: 5.07635313657742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given a segment of time series of a system at a particular set of parameter
values, can one infers the global behavior of the system in its parameter
space? Here we show that by using a learning machine we can achieve such a goal
to a certain extent. It is found that following an appropriate training
strategy that monotonously decreases the cost function, the learning machine in
different training stage can mimic the system at different parameter set.
Consequently, the global dynamical properties of the system is subsequently
revealed, usually in the simple-to-complex order. The underlying mechanism is
attributed to the training strategy, which causes the learning machine to
collapse to a qualitatively equivalent system of the system behind the time
series. Thus, the learning machine opens up a novel way to probe the global
dynamical properties of a black-box system without artificially establish the
equations of motion. The given illustrating examples include a representative
model of low-dimensional nonlinear dynamical systems and a spatiotemporal model
of reaction-diffusion systems.
Related papers
- Learning System Dynamics without Forgetting [60.08612207170659]
Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - A Mathematical Model of the Hidden Feedback Loop Effect in Machine Learning Systems [44.99833362998488]
We introduce a repeated learning process to jointly describe several phenomena attributed to unintended hidden feedback loops.
A distinctive feature of such repeated learning setting is that the state of the environment becomes causally dependent on the learner itself over time.
We present a novel dynamical systems model of the repeated learning process and prove the limiting set of probability distributions for positive and negative feedback loop modes.
arXiv Detail & Related papers (2024-05-04T17:57:24Z) - Learning Governing Equations of Unobserved States in Dynamical Systems [0.0]
We employ a hybrid neural ODE structure to learn governing equations of partially-observed dynamical systems.
We demonstrate that the method is capable of successfully learning the true underlying governing equations of unobserved states within these systems.
arXiv Detail & Related papers (2024-04-29T10:28:14Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Controlling nonlinear dynamical systems into arbitrary states using
machine learning [77.34726150561087]
We propose a novel and fully data driven control scheme which relies on machine learning (ML)
Exploiting recently developed ML-based prediction capabilities of complex systems, we demonstrate that nonlinear systems can be forced to stay in arbitrary dynamical target states coming from any initial state.
Having this highly flexible control scheme with little demands on the amount of required data on hand, we briefly discuss possible applications that range from engineering to medicine.
arXiv Detail & Related papers (2021-02-23T16:58:26Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
We study a class of nonlinear dynamical systems whose state transitions depend linearly on a known feature embedding of state-action pairs.
We propose an active learning approach that achieves this by repeating three steps: trajectory planning, trajectory tracking, and re-estimation of the system from all available data.
We show that our method estimates nonlinear dynamical systems at a parametric rate, similar to the statistical rate of standard linear regression.
arXiv Detail & Related papers (2020-06-18T04:54:11Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
We propose an approach for learning dynamical systems that are guaranteed to be stable over the entire state space.
We show that such learning systems are able to model simple dynamical systems and can be combined with additional deep generative models to learn complex dynamics.
arXiv Detail & Related papers (2020-01-17T00:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.