論文の概要: Dynamical Self-energy Mapping (DSEM) for quantum computing
- arxiv url: http://arxiv.org/abs/2010.05441v2
- Date: Tue, 2 Feb 2021 21:23:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-29 07:33:58.597497
- Title: Dynamical Self-energy Mapping (DSEM) for quantum computing
- Title(参考訳): 量子コンピューティングのための動的自己エネルギーマッピング(DSEM)
- Authors: Diksha Dhawan, Mekena Metcalf, Dominika Zgid
- Abstract要約: ノイズの多い中間スケール量子(NISQ)デバイスでは、コヒーレンスに制限のある適度な数の量子ビットしか利用できない。
古典量子ハイブリッドアルゴリズムを用いて,NISQデバイス上での分子化学シミュレーションにおいて,この課題を回避する方法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For noisy intermediate-scale quantum (NISQ) devices only a moderate number of
qubits with a limited coherence is available thus enabling only shallow
circuits and a few time evolution steps in the currently performed quantum
computations. Here, we present how to bypass this challenge in practical
molecular chemistry simulations on NISQ devices by employing a
classical-quantum hybrid algorithm allowing us to produce a sparse Hamiltonian
which contains only $\mathcal{O}(n^2)$ terms in a Gaussian orbital basis when
compared to the $\mathcal{O}(n^4)$ terms of a standard Hamiltonian, where $n$
is the number of orbitals in the system. Classical part of this hybrid entails
parameterization of the sparse, fictitious Hamiltonian in such a way that it
recovers the self-energy of the original molecular system. Quantum machine then
uses this fictitious Hamiltonian to calculate the self-energy of the system. We
show that the developed hybrid algorithm yields very good total energies for
small molecular test cases while reducing the depth of the quantum circuit by
at least an order of magnitude when compared with simulations involving a full
Hamiltonian.
- Abstract(参考訳): ノイズの多い中間スケール量子(NISQ)デバイスでは、コヒーレンスに制限のある適度な数の量子ビットしか利用できないため、現在実行されている量子計算において、浅い回路と数回の進化ステップしか実現できない。
本稿では,標準ハミルトニアンの$\mathcal{o}(n^4)$項と比較して,ガウス軌道基底において$\mathcal{o}(n^2)$項のみを含むスパースハミルトニアンを生成できる古典量子ハイブリッドアルゴリズムを用いて,nisqデバイスにおける分子化学シミュレーションにおいて,この課題を回避する方法を提案する。
このハイブリッドの古典的な部分は、元の分子系の自己エネルギーを回復するように、スパースで架空のハミルトンのパラメータ化を必要とする。
量子機械はこの架空のハミルトニアンを用いてシステムの自己エネルギーを計算する。
開発したハイブリッドアルゴリズムは, 完全ハミルトニアンを含むシミュレーションと比較して, 量子回路の深さを少なくとも1桁小さくしながら, 小型分子テストケースにおいて非常に良好な総エネルギーが得られることを示す。
関連論文リスト
- Truncation technique for variational quantum eigensolver for Molecular
Hamiltonians [0.0]
変分量子固有解法(VQE)はノイズ量子デバイスのための最も有望な量子アルゴリズムの1つである。
そこで本研究では, トランケートされたハミルトニアンを用いて, 最適化手順を開始する物理直感的なトランケーション手法を提案する。
この戦略により、量子コンピュータ上でのハミルトニアンの期待値に対する必要な評価回数を減らすことができる。
論文 参考訳(メタデータ) (2024-02-02T18:45:12Z) - On The Study Of Partial Qubit Hamiltonian For Efficient Molecular
Simulation Using Variational Quantum Eigensolvers [0.0]
簡単な分子の部分量子ハミルトニアンから情報を抽出し、より効率的な変分量子固有解法を設計するための新しいアプローチを提案する。
この研究の結果は、量子コンピューティングの分野における潜在的な進歩と、量子化学におけるその実装を実証する可能性を持っている。
論文 参考訳(メタデータ) (2023-08-24T03:25:05Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
原子と分子の衝突に対するシュリンガー方程式を解くためのハイブリッド量子古典アルゴリズムを提案する。
このアルゴリズムはコーン変分原理の$S$-matrixバージョンに基づいており、基本散乱$S$-matrixを計算する。
大規模多原子分子の衝突をシミュレートするために,アルゴリズムをどのようにスケールアップするかを示す。
論文 参考訳(メタデータ) (2023-04-12T18:10:47Z) - Sparse random Hamiltonians are quantumly easy [105.6788971265845]
量子コンピュータの候補は、量子システムの低温特性をシミュレートすることである。
本稿は、ほとんどのランダムハミルトニアンに対して、最大混合状態は十分に良い試行状態であることを示す。
位相推定は、基底エネルギーに近いエネルギーの状態を効率的に生成する。
論文 参考訳(メタデータ) (2023-02-07T10:57:36Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
変分アダバティックゲージ変換(VAGT)を導入する。
VAGTは、現在の量子コンピュータを用いてユニタリ回路の変動パラメータを学習できる非摂動型ハイブリッド量子アルゴリズムである。
VAGTの精度は、RigettiおよびIonQ量子コンピュータ上でのシミュレーションと同様に、トラフ数値シミュレーションで検証される。
論文 参考訳(メタデータ) (2021-11-16T20:50:08Z) - A quantum hamiltonian simulation benchmark [1.5301252700705212]
ハミルトンシミュレーションは量子計算における最も重要な問題の1つである。
本稿では,1つのアンシラ量子ビットと複数量子ビット制御ゲートのみを使用する,大幅に単純化された量子回路を提案する。
論文 参考訳(メタデータ) (2021-08-08T22:16:30Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
現在の世代のノイズの多い中間スケール量子コンピュータ(NISQ)は、チップサイズとエラー率に大きく制限されている。
我々は、自由フェルミオンとして知られる特定のスピンハミルトニアンをシミュレーションするために、量子回路を効率よく圧縮するために局所化回路変換を導出する。
提案した数値回路圧縮アルゴリズムは、後方安定に動作し、$mathcalO(103)$スピンを超える回路合成を可能にするスピンの数で3次スケールする。
論文 参考訳(メタデータ) (2021-08-06T19:38:03Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
時間依存ハミルトニアンの下でのユニタリ進化は、量子ハードウェアにおけるシミュレーションの重要な構成要素である。
本稿では、トロッターステップを1ブロックの量子ゲートに圧縮するアルゴリズムを提案する。
この結果、ハミルトニアンのある種のクラスに対する固定深度時間進化がもたらされる。
論文 参考訳(メタデータ) (2021-08-06T19:38:01Z) - A Hybrid Quantum-Classical Hamiltonian Learning Algorithm [6.90132007891849]
ハミルトン学習は、量子デバイスと量子シミュレータの認定に不可欠である。
本研究では,ハミルトニアン作用素の係数を求めるために,ハイブリッド量子古典ハミルトン学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-01T15:15:58Z) - Stoquasticity in circuit QED [78.980148137396]
スケーラブルな符号-確率自由経路積分モンテカルロシミュレーションは一般にそのようなシステムに対して可能であることを示す。
我々は、実効的、非確率的クビットハミルトニアンが容量結合された束量子ビットの系に現れるという最近の発見を裏付ける。
論文 参考訳(メタデータ) (2020-11-02T16:41:28Z) - Hybrid Quantum-Classical Eigensolver Without Variation or Parametric
Gates [0.0]
本稿では,電子量子系の固有エネルギースペクトルを得る方法を提案する。
これは、量子系のハミルトニアンを有限有効ヒルベルト空間に射影することで達成される。
実効ハミルトニアンの対応する対角線および対角線の項を測定するための短深さ量子回路を作成するプロセスを与える。
論文 参考訳(メタデータ) (2020-08-26T02:31:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。