論文の概要: Extended Koopman Models
- arxiv url: http://arxiv.org/abs/2010.06845v1
- Date: Wed, 14 Oct 2020 07:10:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 12:17:57.751879
- Title: Extended Koopman Models
- Title(参考訳): 拡張クープマンモデル
- Authors: Span Spanbauer, Ian Hunter
- Abstract要約: 非線形動的モデリングのクープマン作用素法の2つの新しい一般化を導入する。
それぞれが2つの非線形非動的系の軌道予測において従来のクープマンモデルよりも著しく優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce two novel generalizations of the Koopman operator method of
nonlinear dynamic modeling. Each of these generalizations leads to greatly
improved predictive performance without sacrificing a unique trait of Koopman
methods: the potential for fast, globally optimal control of nonlinear,
nonconvex systems. The first generalization, Convex Koopman Models, uses convex
rather than linear dynamics in the lifted space. The second, Extended Koopman
Models, additionally introduces an invertible transformation of the control
signal which contributes to the lifted convex dynamics. We describe a deep
learning architecture for parameterizing these classes of models, and show
experimentally that each significantly outperforms traditional Koopman models
in trajectory prediction for two nonlinear, nonconvex dynamic systems.
- Abstract(参考訳): 非線形動的モデリングのクープマン作用素法の2つの新しい一般化を導入する。
これらの一般化はそれぞれ、非線形非凸系の高速で大域的な最適制御のポテンシャルであるクープマン法の特徴を犠牲にすることなく、予測性能を大幅に改善する。
最初の一般化であるConvex Koopman Modelsは、持ち上げ空間における線型力学よりも凸を用いる。
2番目に拡張されたkoopmanモデルは、昇降凸ダイナミクスに寄与する制御信号の可逆変換も導入している。
これらのモデルのクラスをパラメータ化するためのディープラーニングアーキテクチャについて述べるとともに,非線形非凸力学系の軌道予測において,それぞれが従来のクープマンモデルを大きく上回っていることを実験的に示す。
関連論文リスト
- Deep Koopman-layered Model with Universal Property Based on Toeplitz Matrices [26.96258010698567]
提案モデルは理論的固さと柔軟性の両方を有する。
提案したモデルの柔軟性により、不規則な力学系から来る時系列データを適合させることができる。
論文 参考訳(メタデータ) (2024-10-03T04:27:46Z) - Deep Learning for Koopman Operator Estimation in Idealized Atmospheric Dynamics [2.2489531925874013]
ディープラーニングは、気象予報に革命をもたらしており、新しいデータ駆動モデルは、中期予測のための運用物理モデルと同等の精度を達成している。
これらのモデルは解釈可能性に欠けることが多く、基礎となる力学を理解するのが難しく、説明が難しい。
本稿では、データ駆動モデルの透明性を高めるために、複雑な非線形力学の線形表現を提供するクープマン作用素を推定する手法を提案する。
論文 参考訳(メタデータ) (2024-09-10T13:56:54Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Compression of the Koopman matrix for nonlinear physical models via hierarchical clustering [0.0]
クープマン作用素の線型特性は非線形力学を理解することを希望する。
本研究では,階層クラスタリングを用いてクープマン行列を圧縮する手法を提案する。
論文 参考訳(メタデータ) (2024-03-27T01:18:00Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
そこで本研究では,遅延座標符号化と全状態復号化を組み合わせた汎用モデル構造を提案し,Koopmanモデリングと状態推定を統合した。
ケーススタディでは,本手法が正確な制御モデルを提供し,高純度極低温蒸留塔のリアルタイム非線形予測制御を可能にすることを実証している。
論文 参考訳(メタデータ) (2024-01-09T11:54:54Z) - Koopman Kernel Regression [6.116741319526748]
クープマン作用素理論は線形時間不変(LTI)ODEによる予測のキャラクタリゼーションに有効なパラダイムであることを示す。
我々は、LTI力学系への変換のみにまたがる、普遍的なクープマン不変核再生ヒルベルト空間(RKHS)を導出する。
実験では、Koopman演算子やシーケンシャルデータ予測器と比較して予測性能が優れていることを示した。
論文 参考訳(メタデータ) (2023-05-25T16:22:22Z) - Learning Bilinear Models of Actuated Koopman Generators from
Partially-Observed Trajectories [1.534667887016089]
クープマン生成器が支配する可観測体の力学を双線型隠れマルコフモデルとして記述する。
本手法の性能を3つの例に示す。
論文 参考訳(メタデータ) (2022-09-20T20:10:03Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
カノニカル相関解析 (CCA) は, 2つのビューの特徴抽出手法である。
本稿では,入力依存の正準相関モデルをトレーニングするための新しい動的スケーリング手法を提案する。
論文 参考訳(メタデータ) (2022-03-23T12:52:49Z) - Estimating Koopman operators for nonlinear dynamical systems: a
nonparametric approach [77.77696851397539]
Koopman演算子は非線形系の線形記述を可能にする数学的ツールである。
本稿では,その核となる部分を同一フレームワークのデュアルバージョンとして捉え,それらをカーネルフレームワークに組み込む。
カーネルメソッドとKoopman演算子との強力なリンクを確立し、Kernel関数を通じて後者を推定する。
論文 参考訳(メタデータ) (2021-03-25T11:08:26Z) - Hessian Eigenspectra of More Realistic Nonlinear Models [73.31363313577941]
私たちは、非線形モデルの広いファミリーのためのヘッセン固有スペクトルの言語的特徴付けを行います。
我々の分析は、より複雑な機械学習モデルで観察される多くの顕著な特徴の起源を特定するために一歩前進する。
論文 参考訳(メタデータ) (2021-03-02T06:59:52Z) - Forecasting Sequential Data using Consistent Koopman Autoencoders [52.209416711500005]
クープマン理論に関連する新しい物理学に基づく手法が導入された。
本稿では,既存の作業の多くと異なり,前方・後方のダイナミクスを生かした新しいコンシスタント・クープマン・オートエンコーダモデルを提案する。
このアプローチの鍵となるのは、一貫性のある力学と関連するクープマン作用素との相互作用を探索する新しい解析である。
論文 参考訳(メタデータ) (2020-03-04T18:24:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。