論文の概要: Deep Koopman-layered Model with Universal Property Based on Toeplitz Matrices
- arxiv url: http://arxiv.org/abs/2410.02199v1
- Date: Thu, 3 Oct 2024 04:27:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 08:06:03.809250
- Title: Deep Koopman-layered Model with Universal Property Based on Toeplitz Matrices
- Title(参考訳): トイプリッツ行列に基づく普遍性を持つ深いクープマン層モデル
- Authors: Yuka Hashimoto, Tomoharu Iwata,
- Abstract要約: 提案モデルは理論的固さと柔軟性の両方を有する。
提案したモデルの柔軟性により、不規則な力学系から来る時系列データを適合させることができる。
- 参考スコア(独自算出の注目度): 26.96258010698567
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose deep Koopman-layered models with learnable parameters in the form of Toeplitz matrices for analyzing the dynamics of time-series data. The proposed model has both theoretical solidness and flexibility. By virtue of the universal property of Toeplitz matrices and the reproducing property underlined in the model, we can show its universality and the generalization property. In addition, the flexibility of the proposed model enables the model to fit time-series data coming from nonautonomous dynamical systems. When training the model, we apply Krylov subspace methods for efficient computations. In addition, the proposed model can be regarded as a neural ODE-based model. In this sense, the proposed model establishes a new connection among Koopman operators, neural ODEs, and numerical linear algebraic methods.
- Abstract(参考訳): 時系列データの動的解析のために,Toeplitz行列を用いて学習可能なパラメータを持つ深層クープマン層モデルを提案する。
提案モデルは理論的固さと柔軟性の両方を有する。
トープリッツ行列の普遍性とモデルに従属する再生性により、その普遍性と一般化性を示すことができる。
さらに,提案モデルの柔軟性により,非線形力学系から得られる時系列データを適合させることができる。
モデルのトレーニングでは、効率的な計算にKrylov部分空間法を適用する。
さらに,提案モデルはニューラルODEモデルとみなすことができる。
この意味で、提案モデルは、クープマン作用素、ニューラルODE、および数値線形代数的手法の間の新しい接続を確立する。
関連論文リスト
- Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Neural Network-Based Piecewise Survival Models [0.3999851878220878]
ニューラルネットワークに基づくサバイバルモデルのファミリが提示される。
これらのモデルは、一般的に使用される離散時間および部分指数モデルの拡張と見なすことができる。
論文 参考訳(メタデータ) (2024-03-27T15:08:00Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
そこで本研究では,遅延座標符号化と全状態復号化を組み合わせた汎用モデル構造を提案し,Koopmanモデリングと状態推定を統合した。
ケーススタディでは,本手法が正確な制御モデルを提供し,高純度極低温蒸留塔のリアルタイム非線形予測制御を可能にすることを実証している。
論文 参考訳(メタデータ) (2024-01-09T11:54:54Z) - Representer Point Selection for Explaining Regularized High-dimensional
Models [105.75758452952357]
本稿では,高次元表現器と呼ぶサンプルベース説明のクラスを紹介する。
私たちのワークホースは、一般化された高次元モデルに対する新しい代表者定理である。
提案手法の実証的性能について,実世界の2進分類データセットと2つの推薦システムデータセットを用いて検討した。
論文 参考訳(メタデータ) (2023-05-31T16:23:58Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Gaussian Process Koopman Mode Decomposition [5.888646114353371]
教師なしガウス過程に基づくクープマンモード分解の非線形確率的生成モデルを提案する。
提案手法を合成データと実世界の疫学的データセットの両方に適用することにより, 推定パラメータを用いて様々な分析が可能であることを示す。
論文 参考訳(メタデータ) (2022-09-09T03:57:07Z) - Learning and Inference in Sparse Coding Models with Langevin Dynamics [3.0600309122672726]
本稿では確率的潜在変数モデルで推論と学習が可能なシステムについて述べる。
ランゲヴィン力学を用いて潜伏変数を推論する連続時間方程式を導出することにより、スパース符号化モデルのこのアイデアを実証する。
ランゲヴィン力学は、L1ノルムが小さいのに対して、潜伏変数をゼロにすることを推奨する'L0スパース'系において、後続分布からサンプリングする効率的な手順をもたらすことを示す。
論文 参考訳(メタデータ) (2022-04-23T23:16:47Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。