論文の概要: Quantum Machine Learning for Particle Physics using a Variational
Quantum Classifier
- arxiv url: http://arxiv.org/abs/2010.07335v1
- Date: Wed, 14 Oct 2020 18:05:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-29 02:37:00.162917
- Title: Quantum Machine Learning for Particle Physics using a Variational
Quantum Classifier
- Title(参考訳): 変分量子分類器を用いた粒子物理学の量子機械学習
- Authors: Andrew Blance and Michael Spannowsky
- Abstract要約: 本稿では,ネットワークのパラメータを最適化するために,量子勾配降下法と急勾配降下法を組み合わせた新しいハイブリッド型変分量子分類器を提案する。
このアルゴリズムは、古典的ニューラルネットワークや、量子最適化法で訓練された量子機械学習法よりも優れた学習結果が得られる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum machine learning aims to release the prowess of quantum computing to
improve machine learning methods. By combining quantum computing methods with
classical neural network techniques we aim to foster an increase of performance
in solving classification problems. Our algorithm is designed for existing and
near-term quantum devices. We propose a novel hybrid variational quantum
classifier that combines the quantum gradient descent method with steepest
gradient descent to optimise the parameters of the network. By applying this
algorithm to a resonance search in di-top final states, we find that this
method has a better learning outcome than a classical neural network or a
quantum machine learning method trained with a non-quantum optimisation method.
The classifiers ability to be trained on small amounts of data indicates its
benefits in data-driven classification problems.
- Abstract(参考訳): 量子機械学習は、機械学習の方法を改善するために量子コンピューティングの能力をリリースすることを目的としている。
量子コンピューティング手法と古典的ニューラルネットワーク技術を組み合わせることにより,分類問題の解法における性能向上を目指す。
我々のアルゴリズムは、既存および短期量子デバイス向けに設計されている。
本稿では,ネットワークのパラメータを最適化するために,量子勾配降下法と急勾配降下法を組み合わせた新しいハイブリッド変分量子分類器を提案する。
このアルゴリズムをdi-top final状態の共振探索に適用することにより,従来のニューラルネットワークや非量子最適化法で学習した量子機械学習法よりも優れた学習結果が得られることを見出した。
少量のデータでトレーニングできる分類器は、データ駆動型分類問題の利点を示している。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Learning To Optimize Quantum Neural Network Without Gradients [3.9848482919377006]
本稿では,量子回路のパラメータを出力するために,Emphmeta-Optimizerネットワークをトレーニングする新しいメタ最適化アルゴリズムを提案する。
我々は,従来の勾配に基づくアルゴリズムよりも回路評価が少ない場合に,より高品質な最小値が得られることを示す。
論文 参考訳(メタデータ) (2023-04-15T01:09:12Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Analog quantum variational embedding classifier [8.445680783099196]
アナログ量子コンピュータを用いたゲート型変分埋め込み分類器を提案する。
性能が飽和し変動するまでのキュービット数を増やすことで分類器の性能を向上させることができる。
提案アルゴリズムは,現実的な機械学習問題を解決するために,現在の量子アニールを用いた可能性を示す。
論文 参考訳(メタデータ) (2022-11-04T20:58:48Z) - Multiclass classification using quantum convolutional neural networks
with hybrid quantum-classical learning [0.5999777817331318]
本稿では,量子畳み込みニューラルネットワークに基づく量子機械学習手法を提案する。
提案手法を用いて,MNISTデータセットの4クラス分類を,データエンコーディングの8つのキュービットと4つのアクニラキュービットを用いて実証する。
この結果から,学習可能なパラメータの数に匹敵する古典的畳み込みニューラルネットワークによる解の精度が示された。
論文 参考訳(メタデータ) (2022-03-29T09:07:18Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Facial Expression Recognition on a Quantum Computer [68.8204255655161]
量子機械学習手法を用いて表情認識の可能な解を示す。
適切に定義された量子状態の振幅に符号化されたグラフの隣接行列を操作する量子回路を定義する。
論文 参考訳(メタデータ) (2021-02-09T13:48:00Z) - Quantum ensemble of trained classifiers [2.048335092363436]
量子コンピュータは、利用可能な量子ビットの数に応じて指数的に大きな状態の集合を表現することができる。
量子機械学習は、機械学習アルゴリズムを強化する量子コンピューティングの可能性を探る。
論文 参考訳(メタデータ) (2020-07-18T01:01:33Z) - QEML (Quantum Enhanced Machine Learning): Using Quantum Computing to
Enhance ML Classifiers and Feature Spaces [0.49841205356595936]
機械学習と量子コンピューティングは、特定のアルゴリズムのパフォーマンスと振る舞いにパラダイムシフトを引き起こしている。
本稿ではまず,量子的特徴空間の実装に関する数学的直観について述べる。
従来のKNNの分類手法を模倣した雑音変動量子回路KNNを構築した。
論文 参考訳(メタデータ) (2020-02-22T04:14:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。