論文の概要: Dynamically Throttleable Neural Networks (TNN)
- arxiv url: http://arxiv.org/abs/2011.02836v1
- Date: Sun, 1 Nov 2020 20:17:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 23:37:52.387839
- Title: Dynamically Throttleable Neural Networks (TNN)
- Title(参考訳): TNN(Dynamically Throttleable Neural Networks)
- Authors: Hengyue Liu, Samyak Parajuli, Jesse Hostetler, Sek Chai, Bir Bhanu
- Abstract要約: ディープニューラルネットワーク(DNN)の条件計算は、全体の計算負荷を削減し、ネットワークのサブセットを実行することでモデルの精度を向上させる。
我々は,自身のパフォーマンス目標と計算資源を適応的に自己制御できるランタイムスロットルブルニューラルネットワーク(TNN)を提案する。
- 参考スコア(独自算出の注目度): 24.052859278938858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conditional computation for Deep Neural Networks (DNNs) reduce overall
computational load and improve model accuracy by running a subset of the
network. In this work, we present a runtime throttleable neural network (TNN)
that can adaptively self-regulate its own performance target and computing
resources. We designed TNN with several properties that enable more flexibility
for dynamic execution based on runtime context. TNNs are defined as
throttleable modules gated with a separately trained controller that generates
a single utilization control parameter. We validate our proposal on a number of
experiments, including Convolution Neural Networks (CNNs such as VGG, ResNet,
ResNeXt, DenseNet) using CiFAR-10 and ImageNet dataset, for object
classification and recognition tasks. We also demonstrate the effectiveness of
dynamic TNN execution on a 3D Convolustion Network (C3D) for a hand gesture
task. Results show that TNN can maintain peak accuracy performance compared to
vanilla solutions, while providing a graceful reduction in computational
requirement, down to 74% reduction in latency and 52% energy savings.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)の条件計算は、全体の計算負荷を削減し、ネットワークのサブセットを実行することでモデルの精度を向上させる。
本研究では,TNN(Runtime throttleable Neural Network)を用いて,自身のパフォーマンス目標と計算資源を適応的に自己制御できるニューラルネットワークを提案する。
ランタイムコンテキストに基づいた動的実行の柔軟性を高めるために,いくつかの特性を備えたTNNを設計しました。
TNNは、単一の利用制御パラメータを生成する個別に訓練されたコントローラでゲートされるスロットル可能なモジュールとして定義される。
我々は、CiFAR-10とImageNetデータセットを用いた畳み込みニューラルネットワーク(VGG、ResNet、ResNeXt、DenseNetなどのCNN)をオブジェクト分類および認識タスクに適用するなど、多数の実験で提案手法を検証する。
また,手動動作のための3D Convolustion Network (C3D) における動的TNN実行の有効性を示す。
その結果、TNNはバニラ解に比べてピーク精度を保ちながら、計算要求を優雅に低減し、レイテンシを74%削減し、省エネを52%削減できることがわかった。
関連論文リスト
- GhostRNN: Reducing State Redundancy in RNN with Cheap Operations [66.14054138609355]
本稿では,効率的なRNNアーキテクチャであるGhostRNNを提案する。
KWSとSEタスクの実験により、提案されたGhostRNNはメモリ使用量(40%)と計算コストを大幅に削減し、性能は類似している。
論文 参考訳(メタデータ) (2024-11-20T11:37:14Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - Bayesian Inference Accelerator for Spiking Neural Networks [3.145754107337963]
スパイキングニューラルネットワーク(SNN)は、計算面積と電力を減らす可能性がある。
本研究では,効率的なベイズSNNをハードウェア上で開発・実装するための最適化フレームワークについて述べる。
我々は、完全精度のベルヌーイパラメータを持つベイジアンバイナリネットワークに匹敵するアキュラ級数を示し、最大25時間分のスパイクを減らした。
論文 参考訳(メタデータ) (2024-01-27T16:27:19Z) - Sparsifying Binary Networks [3.8350038566047426]
バイナリニューラルネットワーク(BNN)は、完全精度のディープニューラルネットワーク(DNN)と同等の精度で複雑なタスクを解く能力を示した。
最近の改善にもかかわらず、非常に限られたリソースを持つ特定のデバイスで不十分な、固定的で制限された圧縮要因に悩まされている。
本稿では,BNNの疎性を導入した新しいモデルとトレーニング手法であるスパースバイナリニューラルネットワーク(SBNN)と,ネットワークの重みをバイナライズする新しい量子化関数を提案する。
論文 参考訳(メタデータ) (2022-07-11T15:54:41Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Can Deep Neural Networks be Converted to Ultra Low-Latency Spiking
Neural Networks? [3.2108350580418166]
スパイクニューラルネットワーク(SNN)は、時間とともに分散されたバイナリスパイクを介して動作する。
SNNのためのSOTAトレーニング戦略は、非スパイキングディープニューラルネットワーク(DNN)からの変換を伴う
そこで本研究では,DNNと変換SNNの誤差を最小限に抑えながら,これらの分布を正確にキャプチャする新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-22T18:47:45Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNN) は、BNNの圧縮と高速化に適した新しいタイプのバイナリ量子化設計である。
SNNは、微細な畳み込みカーネル空間におけるバイナリ量子化を利用するカーネル対応最適化フレームワークで訓練されている。
ビジュアル認識ベンチマークの実験とFPGA上でのハードウェア展開は、SNNの大きな可能性を検証する。
論文 参考訳(メタデータ) (2021-10-18T11:30:29Z) - DTNN: Energy-efficient Inference with Dendrite Tree Inspired Neural
Networks for Edge Vision Applications [2.1800759000607024]
本稿では,活性化量子化によって実現されたテーブルルックアップ操作を用いたエネルギー効率の高い推論のためのDendrite-Tree-based Neural Network (DTNN)を提案する。
DTNNはResNet-18とVGG-11でそれぞれ19.4Xと64.9Xの大幅な省エネを実現した。
論文 参考訳(メタデータ) (2021-05-25T11:44:12Z) - Explore the Knowledge contained in Network Weights to Obtain Sparse
Neural Networks [2.649890751459017]
本稿では,ニューラルネットワーク(NN)における疎結合層の自動獲得のための新しい学習手法を提案する。
タスクニューラルネットワーク(TNN)の構造を最適化するためにスイッチングニューラルネットワーク(SNN)を設計する。
論文 参考訳(メタデータ) (2021-03-26T11:29:40Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。