論文の概要: Action State Update Approach to Dialogue Management
- arxiv url: http://arxiv.org/abs/2011.04637v2
- Date: Tue, 10 Nov 2020 17:03:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-28 01:09:37.472305
- Title: Action State Update Approach to Dialogue Management
- Title(参考訳): 対話管理への行動状態更新アプローチ
- Authors: Svetlana Stoyanchev, Simon Keizer and Rama Doddipatla
- Abstract要約: 本稿では,発話解釈のための行動状態更新手法(ASU)を提案する。
我々のゴールは、ドメイン固有の自然言語理解コンポーネントを使わずに、ユーザ入力における参照表現を解釈することである。
ユーザシミュレーションと対話型評価の両方により,ASUアプローチは対話システムにおけるユーザの発話の解釈に成功していることを示す。
- 参考スコア(独自算出の注目度): 16.602804535683553
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Utterance interpretation is one of the main functions of a dialogue manager,
which is the key component of a dialogue system. We propose the action state
update approach (ASU) for utterance interpretation, featuring a statistically
trained binary classifier used to detect dialogue state update actions in the
text of a user utterance. Our goal is to interpret referring expressions in
user input without a domain-specific natural language understanding component.
For training the model, we use active learning to automatically select
simulated training examples. With both user-simulated and interactive human
evaluations, we show that the ASU approach successfully interprets user
utterances in a dialogue system, including those with referring expressions.
- Abstract(参考訳): 発話解釈は対話管理システムの重要な構成要素である対話マネージャの主要な機能の一つである。
ユーザ発話のテキスト中の対話状態更新動作を検出するために,統計的に訓練されたバイナリ分類器を特徴とする発話解釈のための動作状態更新アプローチ(ASU)を提案する。
私たちの目標は、ドメイン固有の自然言語理解コンポーネントを使わずに、ユーザ入力中の参照表現を解釈することです。
モデルのトレーニングにはアクティブラーニングを使用して,シミュレーショントレーニングの例を自動的に選択する。
ユーザシミュレーションと対話的評価の両面から,ASUアプローチは,参照表現を含む対話システムにおいて,ユーザ発話の解釈に成功していることを示す。
関連論文リスト
- An Efficient Self-Learning Framework For Interactive Spoken Dialog Systems [18.829793635104608]
ダイアログシステムにおけるASRの一般的なフレームワークを紹介する。
従来の学習と比較して,我々の新しいフレームワークを活用することで,実世界の対話システムにおいて比較的WERが10%近く削減されることが示されている。
論文 参考訳(メタデータ) (2024-09-16T17:59:50Z) - LEEETs-Dial: Linguistic Entrainment in End-to-End Task-oriented Dialogue systems [0.0]
GPT-2に基づくエンドツーエンドのタスク指向対話システムにおいて,対話学習を実現する手法を提案する。
我々は、トレーニングインスタンスの重み付け、トレーニング固有の損失、およびユーザーと一致した応答を生成するための追加条件付けを実験した。
論文 参考訳(メタデータ) (2023-11-15T21:35:25Z) - Multi-User MultiWOZ: Task-Oriented Dialogues among Multiple Users [51.34484827552774]
マルチユーザMulti-User MultiWOZデータセットを2つのユーザと1つのエージェント間のタスク指向対話としてリリースする。
これらの対話は、タスク指向のシナリオにおける協調的な意思決定の興味深いダイナミクスを反映している。
本稿では,複数ユーザ間のタスク指向のチャットを簡潔なタスク指向のクエリとして書き換える,マルチユーザコンテキストクエリ書き換えの新しいタスクを提案する。
論文 参考訳(メタデータ) (2023-10-31T14:12:07Z) - Channel-aware Decoupling Network for Multi-turn Dialogue Comprehension [81.47133615169203]
本稿では,PrLMの逐次文脈化を超えて,発話間の包括的相互作用のための合成学習を提案する。
私たちは、モデルが対話ドメインに適応するのを助けるために、ドメイン適応型トレーニング戦略を採用しています。
実験の結果,提案手法は4つの公開ベンチマークデータセットにおいて,強力なPrLMベースラインを著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-01-10T13:18:25Z) - Is MultiWOZ a Solved Task? An Interactive TOD Evaluation Framework with
User Simulator [37.590563896382456]
タスク指向対話(TOD)システムのための対話型評価フレームワークを提案する。
まず,事前学習したモデルに基づいて目標指向のユーザシミュレータを構築し,ユーザシミュレータを用いて対話システムと対話して対話を生成する。
実験の結果,提案したユーザシミュレータによりトレーニングされたRLベースのTODシステムは,約98%のインフォメーションと成功率を達成することができた。
論文 参考訳(メタデータ) (2022-10-26T07:41:32Z) - GODEL: Large-Scale Pre-Training for Goal-Directed Dialog [119.1397031992088]
ダイアログのための大規模事前学習言語モデルであるGODELを紹介する。
GODELは、数ショットの微調整設定で、最先端の事前訓練ダイアログモデルより優れていることを示す。
評価手法の新たな特徴は,応答の有用性を評価するユーティリティの概念の導入である。
論文 参考訳(メタデータ) (2022-06-22T18:19:32Z) - User Satisfaction Estimation with Sequential Dialogue Act Modeling in
Goal-oriented Conversational Systems [65.88679683468143]
我々は,ユーザ満足度を予測するために,対話行動の逐次的ダイナミクスを取り入れた新しいフレームワーク,すなわちUSDAを提案する。
USDAは、ユーザの満足度を予測するために、コンテンツと行動機能の連続的な遷移を対話に取り入れている。
4つのベンチマーク目標指向対話データセットによる実験結果から,提案手法はUSEの既存手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2022-02-07T02:50:07Z) - Alexa Conversations: An Extensible Data-driven Approach for Building
Task-oriented Dialogue Systems [21.98135285833616]
従来の目標指向対話システムは、自然言語理解、対話状態追跡、政策学習、応答生成など、さまざまなコンポーネントに依存している。
スケーラブルかつデータ効率の高い,目標指向の対話システム構築のための新たなアプローチを提案する。
論文 参考訳(メタデータ) (2021-04-19T07:09:27Z) - Interactive Teaching for Conversational AI [2.5259192787433706]
現在の会話型AIシステムは、事前設計された要求のセットを理解し、関連するアクションを実行することを目的としている。
子どもが大人と対話する最初の言語を学習する方法に触発された本論文では、新しいTeachable AIシステムについて述べる。
インタラクティブな授業セッションを使ってエンドユーザーから直接、概念と呼ばれる新しい言語ナゲットを学ぶことができる。
論文 参考訳(メタデータ) (2020-12-02T04:08:49Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
本研究では,言語モデリングのためのタスク指向対話データセットを,人間とマルチターンの9つに統合する。
事前学習時の対話動作をモデル化するために,ユーザトークンとシステムトークンをマスク付き言語モデルに組み込む。
論文 参考訳(メタデータ) (2020-04-15T04:09:05Z) - Conversation Learner -- A Machine Teaching Tool for Building Dialog
Managers for Task-Oriented Dialog Systems [57.082447660944965]
Conversation Learnerは、ダイアログマネージャを構築するための機械学習ツールである。
ダイアログ作成者が慣れ親しんだツールを使ってダイアログフローを作成し、ダイアログフローをパラメトリックモデルに変換することができる。
ユーザシステムダイアログをトレーニングデータとして活用することで、ダイアログ作成者が時間とともにダイアログマネージャを改善することができる。
論文 参考訳(メタデータ) (2020-04-09T00:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。