Learning Effective Spin Hamiltonian of Quantum Magnet
- URL: http://arxiv.org/abs/2011.12282v2
- Date: Mon, 30 Nov 2020 15:48:31 GMT
- Title: Learning Effective Spin Hamiltonian of Quantum Magnet
- Authors: Sizhuo Yu, Yuan Gao, Bin-Bin Chen, Wei Li
- Abstract summary: We propose an unbiased Hamiltonian searching approach that combines various optimization strategies.
We showcase the accuracy and powerfulness by applying it to training thermal data generated from a given spin Hamiltonian.
- Score: 13.848522895524876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interacting spins in quantum magnet can cooperate and exhibit exotic states
like the quantum spin liquid. To explore the materialization of such intriguing
states, the determination of effective spin Hamiltonian of the quantum magnet
is thus an important, while at the same time, very challenging inverse
many-body problem. To efficiently learn the microscopic spin Hamiltonian from
the macroscopic experimental measurements, here we propose an unbiased
Hamiltonian searching approach that combines various optimization strategies,
including the automatic differentiation and Bayesian optimization, etc, with
the exact diagonalization and many-body thermal tensor network calculations. We
showcase the accuracy and powerfulness by applying it to training thermal data
generated from a given spin Hamiltonian, and then to realistic experimental
data measured in the spin-chain compound Copper Nitrate and triangular-lattice
materials TmMgGaO4. This automatic Hamiltonian searching constitutes a very
promising approach in the studies of the intriguing spin liquid candidate
magnets and correlated electron materials in general.
Related papers
- Finding the Dynamics of an Integrable Quantum Many-Body System via
Machine Learning [0.0]
We study the dynamics of the Gaudin magnet ("central-spin model") using machine-learning methods.
Motivated in part by this intuition, we use a neural-network representation for each variational eigenstate of the model Hamiltonian.
Having an efficient description of this susceptibility opens the door to improved characterization and quantum control procedures for qubits interacting with an environment of quantum two-level systems.
arXiv Detail & Related papers (2023-07-06T21:49:01Z) - Classification and magic magnetic-field directions for spin-orbit-coupled double quantum dots [0.0]
Fundamental building blocks of spin-based quantum computing have been demonstrated in double quantum dots with significant spin-orbit coupling.
We show that spin-orbit-coupled double quantum dots can be categorised in six classes, according to a partitioning of the multi-dimensional space of their $g$-tensors.
arXiv Detail & Related papers (2023-07-06T12:42:45Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Quantum simulation of antiferromagnetic Heisenberg chain with
gate-defined quantum dots [0.0]
Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model.
We show the quantum simulation of magnetism in the Mott-insulator regime with a linear quantum-dot array.
arXiv Detail & Related papers (2021-03-15T09:45:02Z) - Mapping quantum chemical dynamics problems onto spin-lattice simulators [0.5249805590164901]
We provide a framework which allows for the solution of quantum chemical nuclear dynamics by mapping these to quantum spin-lattice simulators.
Our approach represents a paradigm shift in the methods used to study quantum nuclear dynamics.
arXiv Detail & Related papers (2021-03-12T17:32:52Z) - Spin-spin interactions in solids from mixed all-electron and
pseudopotential calculations $-$ a path to screening materials for spin
qubits [1.5119440099674917]
We present a real-space approach based on density functional theory for the calculation of spin-Hamiltonian parameters.
We show that only a small number of atoms surrounding a defect need to be treated at the all-electron level, in order to obtain an overall all-electron accuracy.
We also present results for coherence times, computed with the cluster correlation expansion method, highlighting the importance of accurate spin-Hamiltonian parameters for quantitative predictions of spin dynamics.
arXiv Detail & Related papers (2021-01-30T06:22:21Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.