論文の概要: Applied Machine Learning for Games: A Graduate School Course
- arxiv url: http://arxiv.org/abs/2012.01148v2
- Date: Fri, 1 Jan 2021 18:06:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-07 05:56:16.626100
- Title: Applied Machine Learning for Games: A Graduate School Course
- Title(参考訳): ゲームのための応用機械学習:大学院教育コース
- Authors: Yilei Zeng, Aayush Shah, Jameson Thai, Michael Zyda
- Abstract要約: 本稿では,近年の深層学習と強化学習をゲームに応用することに関心を持つ大学院生を対象とした機械学習コースについて述べる。
このコースに入学した学生は、コンピュータビジョン、自然言語処理、コンピュータグラフィックス、人間のコンピュータインタラクション、ロボット工学、データ分析など、さまざまな機械学習技術を適用して、ゲームにおけるオープンな課題を解決する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The game industry is moving into an era where old-style game engines are
being replaced by re-engineered systems with embedded machine learning
technologies for the operation, analysis and understanding of game play. In
this paper, we describe our machine learning course designed for graduate
students interested in applying recent advances of deep learning and
reinforcement learning towards gaming. This course serves as a bridge to foster
interdisciplinary collaboration among graduate schools and does not require
prior experience designing or building games. Graduate students enrolled in
this course apply different fields of machine learning techniques such as
computer vision, natural language processing, computer graphics, human computer
interaction, robotics and data analysis to solve open challenges in gaming.
Student projects cover use-cases such as training AI-bots in gaming benchmark
environments and competitions, understanding human decision patterns in gaming,
and creating intelligent non-playable characters or environments to foster
engaging gameplay. Projects demos can help students open doors for an industry
career, aim for publications, or lay the foundations of a future product. Our
students gained hands-on experience in applying state of the art machine
learning techniques to solve real-life problems in gaming.
- Abstract(参考訳): ゲーム産業は、昔ながらのゲームエンジンが、ゲームプレイの操作、分析、理解のための組み込み機械学習技術を備えた再設計システムに置き換えられつつある時代へと向かっている。
本稿では,最近の深層学習や強化学習をゲームに応用することに関心のある大学院生を対象とした機械学習コースについて述べる。
このコースは大学院間の学際的なコラボレーションを促進するための橋となり、ゲームの設計や構築に先行した経験は必要としない。
このコースに入学した大学院生は、コンピュータビジョン、自然言語処理、コンピュータグラフィックス、人間のコンピュータインタラクション、ロボット工学、データ分析など、さまざまな機械学習技術を適用して、ゲームにおけるオープンな課題を解決する。
学生プロジェクトは、ゲームベンチマーク環境や競争におけるAIボットのトレーニング、ゲームにおける人間の決定パターンの理解、ゲームプレイを促進するためのインテリジェントな非プレイ可能なキャラクターや環境の作成など、ユースケースをカバーする。
プロジェクトのデモは、学生が業界キャリアの扉を開くのを助けたり、出版物をターゲットにしたり、将来の製品の基礎を築くのに役立つ。
学生たちは、ゲームにおける現実の問題を解決するために、最先端の機械学習技術を適用した経験を積んだ。
関連論文リスト
- Learning to Play Foosball: System and Baselines [0.09642500063568188]
この研究は、科学研究、特にロボット学習の領域において、フォスボールを多用途プラットフォームとして活用する。
本稿では,Fosball の自動表とそれに対応する模擬表を提示し,様々な課題を提示する。
物理フォスボールテーブルを研究フレンドリーなシステムにするために、ゴールキーパーロッドを制御するために、自由な運動鎖を2度の自由度で拡張しました。
論文 参考訳(メタデータ) (2024-07-23T16:11:08Z) - Research Experience of an Undergraduate Student in Computer Vision and Robotics [0.0]
本稿では,コンピュータビジョンとロボティクスの分野に精通するコンピュータ工学の学部生の教育経験に焦点を当てる。
カメラが翻訳動作を行うとき、光学フローとその応用がどのように移動物体を検出するのかを探求し、遭遇した課題とそれらを克服するための戦略を強調した。
論文 参考訳(メタデータ) (2024-07-14T02:01:50Z) - Visual Encoders for Data-Efficient Imitation Learning in Modern Video
Games [13.241655571625822]
現代のゲームにおけるトレーニングエージェントに向けたアタリゲームを超えることは、研究コミュニティの大部分にとって違法に高価である。
大規模ビジョンモデルの研究、開発、オープンリリースの最近の進歩は、コミュニティ全体でこれらのコストの一部を償却する可能性がある。
本稿では, Minecraft, Minecraft Dungeons および Counter-Strike: Global Offensive の典型的な, タスク固有のエンドツーエンドトレーニングアプローチと比較して, 公開可能なビジュアルエンコーダを用いた模倣学習の体系的研究を行う。
論文 参考訳(メタデータ) (2023-12-04T19:52:12Z) - Technical Challenges of Deploying Reinforcement Learning Agents for Game
Testing in AAA Games [58.720142291102135]
本稿では,既存の自動ゲームテストソリューションに,スクリプト型ボットをベースとして,実験的な強化学習システムを追加する取り組みについて述べる。
ゲーム制作において強化学習を活用するためのユースケースを示し、ゲームのために同じ旅をしたいと思う人なら誰でも遭遇する最大の時間をカバーしています。
我々は、機械学習、特にゲーム生産において効果的なツールである強化学習を作るのに価値があり、必要であると考えるいくつかの研究指針を提案する。
論文 参考訳(メタデータ) (2023-07-19T18:19:23Z) - Actionable Models: Unsupervised Offline Reinforcement Learning of
Robotic Skills [93.12417203541948]
与えられたデータセットの任意の目標状態に到達するために学習することによって、環境の機能的な理解を学ぶ目的を提案する。
提案手法は,高次元カメラ画像上で動作し,これまで見つからなかったシーンやオブジェクトに一般化した実ロボットの様々なスキルを学習することができる。
論文 参考訳(メタデータ) (2021-04-15T20:10:11Z) - Deep Learning Techniques for Super-Resolution in Video Games [91.3755431537592]
コンピュータ科学者はグラフィカル処理ハードウェアの性能を改善する新しい方法を開発する必要がある。
ビデオ超解像のための深層学習技術は、計算コストの大部分を相殺しながら、高品質なグラフィックスを持つことができる。
論文 参考訳(メタデータ) (2020-12-17T18:22:05Z) - Using game simulator Software Inc in the Software Engineering education [0.0]
この記事では、将来のソフトウェアエンジニアのトレーニングにゲームシミュレータSotware Incを使用することの可能性について述べる。
教育過程におけるゲームシミュレータを含む現代のICTの利用は、教育材料の品質を向上させることができる。
論文 参考訳(メタデータ) (2020-11-26T13:26:55Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
ソフトウェア開発業界は、現代のソフトウェアシステムを高度にインテリジェントで自己学習システムに移行するために、機械学習を急速に採用している。
ソフトウェアエンジニアリングライフサイクルの段階にわたって機械学習の採用について、現状を探求する包括的な研究は存在しない。
本研究は,機械学習によるソフトウェア工学(MLSE)分類を,ソフトウェア工学ライフサイクルのさまざまな段階に適用性に応じて,最先端の機械学習技術に分類するものである。
論文 参考訳(メタデータ) (2020-05-27T11:56:56Z) - State of the Art on Neural Rendering [141.22760314536438]
我々は,古典的コンピュータグラフィックス技術と深層生成モデルを組み合わせることで,制御可能かつフォトリアリスティックな出力を得るアプローチに焦点をあてる。
本報告は,新しいビュー合成,セマンティック写真操作,顔と身体の再現,リライティング,自由視点ビデオ,バーチャルおよび拡張現実テレプレゼンスのためのフォトリアリスティックアバターの作成など,記述されたアルゴリズムの多くの重要なユースケースに焦点をあてる。
論文 参考訳(メタデータ) (2020-04-08T04:36:31Z) - Exploration Based Language Learning for Text-Based Games [72.30525050367216]
本研究は,テキストベースのコンピュータゲームにおいて,最先端の性能を発揮できる探索・模倣学習型エージェントを提案する。
テキストベースのコンピュータゲームは、自然言語でプレイヤーの世界を記述し、プレイヤーがテキストを使ってゲームと対話することを期待する。
これらのゲームは、言語理解、問題解決、および人工エージェントによる言語生成のためのテストベッドと見なすことができるため、興味がある。
論文 参考訳(メタデータ) (2020-01-24T03:03:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。