論文の概要: Deep learning based numerical approximation algorithms for stochastic
partial differential equations and high-dimensional nonlinear filtering
problems
- arxiv url: http://arxiv.org/abs/2012.01194v1
- Date: Wed, 2 Dec 2020 13:25:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-25 04:05:30.695299
- Title: Deep learning based numerical approximation algorithms for stochastic
partial differential equations and high-dimensional nonlinear filtering
problems
- Title(参考訳): 深層学習に基づく確率偏微分方程式の数値近似アルゴリズムと高次元非線形フィルタリング問題
- Authors: Christian Beck, Sebastian Becker, Patrick Cheridito, Arnulf Jentzen,
Ariel Neufeld
- Abstract要約: 本稿では、偏微分方程式(SPDE)の解に対するディープラーニングに基づく近似アルゴリズムの導入と研究を行う。
本研究では,SPDEの駆動ノイズ過程のすべての実現にディープニューラルネットワークを用い,SPDEの解過程を近似する。
これらのSPDEのそれぞれにおいて,提案した近似アルゴリズムは,最大50空間の短い実行時間で正確な結果を生成する。
- 参考スコア(独自算出の注目度): 4.164845768197489
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this article we introduce and study a deep learning based approximation
algorithm for solutions of stochastic partial differential equations (SPDEs).
In the proposed approximation algorithm we employ a deep neural network for
every realization of the driving noise process of the SPDE to approximate the
solution process of the SPDE under consideration. We test the performance of
the proposed approximation algorithm in the case of stochastic heat equations
with additive noise, stochastic heat equations with multiplicative noise,
stochastic Black--Scholes equations with multiplicative noise, and Zakai
equations from nonlinear filtering. In each of these SPDEs the proposed
approximation algorithm produces accurate results with short run times in up to
50 space dimensions.
- Abstract(参考訳): 本稿では,確率偏微分方程式(SPDE)の解に対するディープラーニングに基づく近似アルゴリズムの導入と研究を行う。
提案する近似アルゴリズムでは、spdeの駆動雑音過程を全て実現するためにディープニューラルネットワークを用いて、検討中のspdeの解過程を近似する。
提案する近似アルゴリズムの性能は,加算雑音を伴う確率的熱方程式,乗法雑音を伴う確率的熱方程式,乗法ノイズを持つ確率的ブラック・シェール方程式,非線形フィルタリングによるザカイ方程式において検証する。
これらのSPDEのそれぞれにおいて,提案した近似アルゴリズムは,最大50空間の短い実行時間で正確な結果を生成する。
関連論文リスト
- Solving Fractional Differential Equations on a Quantum Computer: A Variational Approach [0.1492582382799606]
本稿では, 時間-屈折偏微分方程式の解法として, 効率的な変分型量子古典アルゴリズムを提案する。
その結果, 解の忠実度は分数指数に不感であり, 勾配評価コストは時間ステップ数とともに経済的にスケールすることがわかった。
論文 参考訳(メタデータ) (2024-06-13T02:27:16Z) - Differentially Private Optimization with Sparse Gradients [60.853074897282625]
微分プライベート(DP)最適化問題を個人勾配の空間性の下で検討する。
これに基づいて、スパース勾配の凸最適化にほぼ最適な速度で純粋および近似DPアルゴリズムを得る。
論文 参考訳(メタデータ) (2024-04-16T20:01:10Z) - Solving Systems of Linear Equations: HHL from a Tensor Networks Perspective [39.58317527488534]
本稿では,HHLアルゴリズムに基づく線形方程式系の解法を,新しい四重項法を用いて提案する。
テンソルネットワーク上で量子インスパイアされたバージョンを実行し、プロジェクションのような非単体演算を行う能力を生かした。
論文 参考訳(メタデータ) (2023-09-11T08:18:41Z) - Efficient Quantum Algorithms for Nonlinear Stochastic Dynamical Systems [2.707154152696381]
本稿では、Fokker-Planck方程式(FPE)を用いて非線形微分方程式(SDE)を解くための効率的な量子アルゴリズムを提案する。
空間と時間におけるFPEを2つのよく知られた数値スキーム、すなわち Chang-Cooper と暗黙の有限差分を用いて識別する。
次に、量子線型系を用いて線形方程式の結果の解を計算する。
論文 参考訳(メタデータ) (2023-03-04T17:40:23Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
不均一な問題に対する近似メッセージパッシングアルゴリズム(AMP)を導出する。
特に,情報理論の閾値よりも大きい信号と雑音の比を必要とする既知のアルゴリズムが,ランダムよりも優れた処理を行うための統計的・計算的ギャップの存在を同定する。
論文 参考訳(メタデータ) (2023-02-13T19:57:17Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Deep learning numerical methods for high-dimensional fully nonlinear
PIDEs and coupled FBSDEs with jumps [26.28912742740653]
高次元放物型積分微分方程式(PIDE)を解くためのディープラーニングアルゴリズムを提案する。
ジャンプ拡散過程はブラウン運動と独立補償ポアソンランダム測度によって導出される。
この深層学習アルゴリズムの誤差推定を導出するために,マルコビアンの収束,オイラー時間離散化の誤差境界,および深層学習アルゴリズムのシミュレーション誤差について検討した。
論文 参考訳(メタデータ) (2023-01-30T13:55:42Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
フィルタ方程式は、数値天気予報、金融、工学など、多くの現実の応用において中心的な役割を果たす。
フィルタリング方程式の解を近似する古典的なアプローチの1つは、分割法と呼ばれるPDEにインスパイアされた方法を使うことである。
我々はこの手法をニューラルネットワーク表現と組み合わせて、信号プロセスの非正規化条件分布の近似を生成する。
論文 参考訳(メタデータ) (2022-01-10T11:01:36Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
決定論的条件と決定論的条件の両方において、二段階最適化問題を解決するアルゴリズムのクラスについて検討する。
厳密な勾配の推定を補正するために、ウォームスタート戦略を利用する。
このフレームワークを用いることで、これらのアルゴリズムは勾配の偏りのない推定値にアクセス可能な手法の計算複雑性と一致することを示す。
論文 参考訳(メタデータ) (2021-11-29T15:10:09Z) - Optimization and Noise Analysis of the Quantum Algorithm for Solving
One-Dimensional Poisson Equation [17.65730040410185]
一次元ポアソン方程式を解くための効率的な量子アルゴリズムを提案する。
このアルゴリズムをさらに発展させ、ノイズの多い中間スケール量子(NISQ)デバイスにおける実際の応用に近づける。
我々は、IBM Qiskitツールキットを用いて、実量子デバイスに存在する一般的なノイズがアルゴリズムに与える影響を分析する。
論文 参考訳(メタデータ) (2021-08-27T09:44:41Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。