論文の概要: Solving Fractional Differential Equations on a Quantum Computer: A Variational Approach
- arxiv url: http://arxiv.org/abs/2406.08755v1
- Date: Thu, 13 Jun 2024 02:27:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 21:38:10.876697
- Title: Solving Fractional Differential Equations on a Quantum Computer: A Variational Approach
- Title(参考訳): 量子コンピュータにおける分数微分方程式の解法:変分的アプローチ
- Authors: Fong Yew Leong, Dax Enshan Koh, Jian Feng Kong, Siong Thye Goh, Jun Yong Khoo, Wei-Bin Ewe, Hongying Li, Jayne Thompson, Dario Poletti,
- Abstract要約: 本稿では, 時間-屈折偏微分方程式の解法として, 効率的な変分型量子古典アルゴリズムを提案する。
その結果, 解の忠実度は分数指数に不感であり, 勾配評価コストは時間ステップ数とともに経済的にスケールすることがわかった。
- 参考スコア(独自算出の注目度): 0.1492582382799606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce an efficient variational hybrid quantum-classical algorithm designed for solving Caputo time-fractional partial differential equations. Our method employs an iterable cost function incorporating a linear combination of overlap history states. The proposed algorithm is not only efficient in time complexity, but has lower memory costs compared to classical methods. Our results indicate that solution fidelity is insensitive to the fractional index and that gradient evaluation cost scales economically with the number of time steps. As a proof of concept, we apply our algorithm to solve a range of fractional partial differential equations commonly encountered in engineering applications, such as the sub-diffusion equation, the non-linear Burgers' equation and a coupled diffusive epidemic model. We assess quantum hardware performance under realistic noise conditions, further validating the practical utility of our algorithm.
- Abstract(参考訳): 本稿では, 時間-屈折偏微分方程式の解法として, 効率的な変分型量子古典アルゴリズムを提案する。
本手法では,重なり合う履歴状態の線形結合を組み込んだ反復コスト関数を用いる。
提案アルゴリズムは時間的複雑さだけでなく,従来の手法に比べてメモリコストが低い。
その結果, 解の忠実度は分数指数に不感であり, 勾配評価コストは時間ステップ数とともに経済的にスケールすることがわかった。
概念実証として, 準拡散方程式, 非線型バーガー方程式, 共分散拡散拡散モデルなど, 工学的応用でよく見られる分数偏微分方程式を解くために, アルゴリズムを適用した。
我々は現実的な雑音条件下での量子ハードウェアの性能を評価し、アルゴリズムの実用性をさらに検証した。
関連論文リスト
- H-DES: a Quantum-Classical Hybrid Differential Equation Solver [0.0]
本稿では、微分方程式の系を解くための独自のハイブリッド量子古典アルゴリズムを提案する。
このアルゴリズムは、異なるパラメタライズド回路によって生成される量子状態の振幅における解関数を符号化するスペクトル法に依存している。
論文 参考訳(メタデータ) (2024-10-01T23:47:41Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Efficient Quantum Algorithms for Nonlinear Stochastic Dynamical Systems [2.707154152696381]
本稿では、Fokker-Planck方程式(FPE)を用いて非線形微分方程式(SDE)を解くための効率的な量子アルゴリズムを提案する。
空間と時間におけるFPEを2つのよく知られた数値スキーム、すなわち Chang-Cooper と暗黙の有限差分を用いて識別する。
次に、量子線型系を用いて線形方程式の結果の解を計算する。
論文 参考訳(メタデータ) (2023-03-04T17:40:23Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Alternatives to a nonhomogeneous partial differential equation quantum
algorithm [52.77024349608834]
Apsi(textbfr)=f(textbfr)$ という形の非等質線型偏微分方程式を解くための量子アルゴリズムを提案する。
これらの成果により、現代の技術に基づく量子アルゴリズムの実験的実装が容易になった。
論文 参考訳(メタデータ) (2022-05-11T14:29:39Z) - Automated differential equation solver based on the parametric
approximation optimization [77.34726150561087]
本稿では,最適化アルゴリズムを用いてパラメータ化近似を用いた解を求める手法を提案する。
アルゴリズムのパラメータを変更することなく、幅広い種類の方程式を自動で解くことができる。
論文 参考訳(メタデータ) (2022-05-11T10:06:47Z) - Variational Quantum Evolution Equation Solver [0.0]
変分量子アルゴリズムは、短期量子コンピュータ上で偏微分方程式を解くための有望な新しいパラダイムを提供する。
ラプラシアン作用素の暗黙的時間ステッピングにより一般進化方程式を解くための変分量子アルゴリズムを提案する。
反応拡散や圧縮不能なナビエ・ストークス方程式などの非線形項を持つ進化方程式系の半単純解法を提案する。
論文 参考訳(メタデータ) (2022-04-06T16:02:11Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
提案されたハイブリッドアルゴリズムは、コスト関数をハミルトニアン問題にエンコードし、回路の複雑さの低い一連の状態によってエネルギーを最適化する。
レベル$p=2,ldots, 6$の場合、予想される近似比をほぼ維持しながら、レベル$p$を1に減らすことができる。
論文 参考訳(メタデータ) (2022-03-01T19:47:16Z) - QBoost for regression problems: solving partial differential equations [0.0]
ハイブリッドアルゴリズムは、必要なキュービット数において、良好な精度と良好なスケーリングで偏微分方程式の解を求めることができる。
古典的な部分は、機械学習を用いて偏微分方程式を解くことができる複数の回帰器を訓練することによって構成される。
量子部分は、回帰問題を解くためにQBoostアルゴリズムを適用することで構成される。
論文 参考訳(メタデータ) (2021-08-30T16:13:04Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
本稿では,2次非制約二項最適化の事例に対する近似解を求める古典的アルゴリズムを提案する。
我々は、チューニング可能な硬さと植え付けソリューションを備えた大規模問題インスタンスに対して、我々のアプローチをベンチマークする。
論文 参考訳(メタデータ) (2021-08-18T09:26:17Z) - Scalable Gradients for Stochastic Differential Equations [40.70998833051251]
随伴感度法は 通常の微分方程式の勾配を
我々はこの手法を微分方程式に一般化し、時間効率と定数メモリ計算を可能にする。
提案手法は,ネットワークによって定義されたニューラルダイナミクスに適合し,50次元モーションキャプチャーデータセット上での競合性能を実現する。
論文 参考訳(メタデータ) (2020-01-05T23:05:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。