論文の概要: Quantum Convolutional Neural Networks for High Energy Physics Data
Analysis
- arxiv url: http://arxiv.org/abs/2012.12177v1
- Date: Tue, 22 Dec 2020 17:14:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-26 07:35:08.640100
- Title: Quantum Convolutional Neural Networks for High Energy Physics Data
Analysis
- Title(参考訳): 高エネルギー物理データ解析のための量子畳み込みニューラルネットワーク
- Authors: Samuel Yen-Chi Chen, Tzu-Chieh Wei, Chao Zhang, Haiwang Yu, Shinjae
Yoo
- Abstract要約: 本研究では、高エネルギー物理事象の分類のための量子畳み込みニューラルネットワーク(QCNN)を提案する。
提案するアーキテクチャは、従来の畳み込みニューラルネットワーク(cnns)よりも、同じ数のパラメータで高速に学習する量子的な利点を示す。
- 参考スコア(独自算出の注目度): 7.0132255816377445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents a quantum convolutional neural network (QCNN) for the
classification of high energy physics events. The proposed model is tested
using a simulated dataset from the Deep Underground Neutrino Experiment. The
proposed architecture demonstrates the quantum advantage of learning faster
than the classical convolutional neural networks (CNNs) under a similar number
of parameters. In addition to faster convergence, the QCNN achieves greater
test accuracy compared to CNNs. Based on experimental results, it is a
promising direction to study the application of QCNN and other quantum machine
learning models in high energy physics and additional scientific fields.
- Abstract(参考訳): 本研究では、高エネルギー物理事象の分類のための量子畳み込みニューラルネットワーク(QCNN)を提案する。
提案モデルは,Deep Underground Neutrino Experimentのシミュレーションデータセットを用いて実験を行う。
提案するアーキテクチャは、従来の畳み込みニューラルネットワーク(cnns)よりも、同じ数のパラメータで高速に学習する量子的な利点を示す。
より高速な収束に加えて、QCNNはCNNよりも高いテスト精度を達成する。
実験結果に基づいて、QCNNや他の量子機械学習モデルの高エネルギー物理学および追加の科学分野への応用を研究する上で有望な方向である。
関連論文リスト
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) とContinuous Time Recurrent Quantum Neural Network (CTRQNet) を開発した。
LQNetとCTRQNetは、バイナリ分類によってCIFAR 10で40%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-08-28T00:56:03Z) - A Quantum Convolutional Neural Network Approach for Object Detection and
Classification [0.0]
QCNNの時間と精度は、異なる条件下での古典的なCNNやANNモデルと比較される。
この分析により、QCNNは、特定のアプリケーションにおける精度と効率の点で、古典的なCNNとANNのモデルより優れている可能性が示されている。
論文 参考訳(メタデータ) (2023-07-17T02:38:04Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Quantum-inspired Complex Convolutional Neural Networks [17.65730040410185]
我々は、より豊かな表現能力とより良い非線形性を持つ複素数値重みを利用することにより、量子刺激ニューロンを改善した。
我々は、高次元データを処理できる量子インスパイアされた畳み込みニューラルネットワーク(QICNN)のモデルを描く。
5つのQICNNの分類精度をMNISTとCIFAR-10データセットで検証した。
論文 参考訳(メタデータ) (2021-10-31T03:10:48Z) - QDCNN: Quantum Dilated Convolutional Neural Network [1.52292571922932]
量子拡張畳み込みニューラルネットワーク(QDCNN)と呼ばれる新しいハイブリッド量子古典型アルゴリズムを提案する。
提案手法は,現代のディープラーニングアルゴリズムに広く応用されている拡張畳み込みの概念を,ハイブリッドニューラルネットワークの文脈にまで拡張する。
提案したQDCNNは,量子畳み込み過程において,計算コストを低減しつつ,より大きなコンテキストを捉えることができる。
論文 参考訳(メタデータ) (2021-10-29T10:24:34Z) - On Circuit-based Hybrid Quantum Neural Networks for Remote Sensing
Imagery Classification [88.31717434938338]
ハイブリッドQCNNは、標準ニューラルネットワーク内に量子層を導入することで、CNNの古典的なアーキテクチャを豊かにする。
この研究で提案された新しいQCNNは、地球観測(EO)のユースケースとして選択された土地利用・土地被覆(LULC)分類に適用される。
マルチクラス分類の結果は,QCNNの性能が従来の性能よりも高いことを示すことによって,提案手法の有効性を証明した。
論文 参考訳(メタデータ) (2021-09-20T12:41:50Z) - Quantum convolutional neural network for classical data classification [0.8057006406834467]
古典データ分類のための完全パラメータ化量子畳み込みニューラルネットワーク(QCNN)をベンチマークする。
本稿では,CNNにインスパイアされた量子ニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T06:48:34Z) - A Quantum Convolutional Neural Network for Image Classification [7.745213180689952]
量子畳み込みニューラルネットワーク(QCNN)という新しいニューラルネットワークモデルを提案する。
QCNNは実装可能な量子回路に基づいており、古典的畳み込みニューラルネットワークと同様の構造を持つ。
MNISTデータセットの数値シミュレーションにより,本モデルの有効性が示された。
論文 参考訳(メタデータ) (2021-07-08T06:47:34Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。