論文の概要: An Elo-like System for Massive Multiplayer Competitions
- arxiv url: http://arxiv.org/abs/2101.00400v1
- Date: Sat, 2 Jan 2021 08:14:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-13 12:37:42.684296
- Title: An Elo-like System for Massive Multiplayer Competitions
- Title(参考訳): 大規模マルチプレイヤーコンペティションのためのエロ様システム
- Authors: Aram Ebtekar and Paul Liu
- Abstract要約: 参加者数の多いコンテストを対象とした新しいベイズ評価システムを提案する。
それは離散的なランク付けされたマッチの競争のフォーマットに広く適当です。
システムにはインセンティブが整い、すなわち、格付けを最大化しようとするプレイヤーは、決してパフォーマンスを損なうことはない。
- 参考スコア(独自算出の注目度): 1.8782750537161612
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rating systems play an important role in competitive sports and games. They
provide a measure of player skill, which incentivizes competitive performances
and enables balanced match-ups. In this paper, we present a novel Bayesian
rating system for contests with many participants. It is widely applicable to
competition formats with discrete ranked matches, such as online programming
competitions, obstacle courses races, and some video games. The simplicity of
our system allows us to prove theoretical bounds on robustness and runtime. In
addition, we show that the system aligns incentives: that is, a player who
seeks to maximize their rating will never want to underperform. Experimentally,
the rating system rivals or surpasses existing systems in prediction accuracy,
and computes faster than existing systems by up to an order of magnitude.
- Abstract(参考訳): レーティングシステムは競技や競技において重要な役割を果たしている。
プレイヤーのスキルを測り、競争力を高め、バランスの取れた試合を可能にする。
本稿では,多数の参加者が参加するコンテストのベイズ評価システムを提案する。
オンラインプログラミング競技、障害物コースレース、いくつかのビデオゲームなど、個別のランキングマッチを持つ競技形式に広く適用されている。
システムの単純さにより、ロバスト性とランタイムに関する理論的境界を証明できます。
さらに,評価を最大化しようとするプレイヤーは,決して過度にパフォーマンスを損なうことはない。
実験的に、レーティングシステムは予測精度で既存のシステムと競合するか、あるいは上回っており、既存のシステムよりも桁違いに高速に計算する。
関連論文リスト
- Benchmarking Robustness and Generalization in Multi-Agent Systems: A
Case Study on Neural MMO [50.58083807719749]
IJCAI 2022で開催されている第2回Neural MMOチャレンジの結果を報告する。
この競合はマルチエージェントシステムの堅牢性と一般化をターゲットにしている。
環境ラッパー、ベースライン、可視化ツール、そしてさらなる研究のための選択されたポリシーを含むベンチマークをオープンソースにします。
論文 参考訳(メタデータ) (2023-08-30T07:16:11Z) - Behavioral Player Rating in Competitive Online Shooter Games [3.203973145772361]
本稿では,ゲーム内統計学からモデルプレイヤへのいくつかの特徴を設計し,その振る舞いと真のパフォーマンスレベルを正確に表現するレーティングを作成する。
その結果, 動作評価は, 生成した表現の解釈可能性を維持しつつ, より正確な性能評価を示すことがわかった。
プレイヤーのプレイ行動の異なる側面を考慮し、マッチメイキングに行動評価を使用すると、プレイヤーのゴールや関心とより一致したマッチアップにつながる可能性がある。
論文 参考訳(メタデータ) (2022-07-01T16:23:01Z) - Collusion Detection in Team-Based Multiplayer Games [57.153233321515984]
チームベースのマルチプレイヤーゲームにおいて,協調動作を検出するシステムを提案する。
提案手法は,ゲーム内行動パターンと組み合わせたプレイヤーの社会的関係を解析する。
次に,非教師なし学習手法であるアイソレーションフォレストによる検出を自動化する。
論文 参考訳(メタデータ) (2022-03-10T02:37:39Z) - Learning to Identify Top Elo Ratings: A Dueling Bandits Approach [27.495132915328025]
我々は,Elo評価(トッププレイヤー)のサンプル効率を改善するために,効率的なオンラインマッチングスケジューリングアルゴリズムを提案する。
具体的には、上位プレイヤーをデュエルバンドフレームワークで識別し、Eloの勾配ベースの更新に合わせてバンディットアルゴリズムを調整する。
我々のアルゴリズムは、競合ラウンドの数で$tildeO(sqrtT)$, sublinearを保証しており、多次元エロ評価にまで拡張されている。
論文 参考訳(メタデータ) (2022-01-12T13:57:29Z) - Evaluating Team Skill Aggregation in Online Competitive Games [4.168733556014873]
本稿では,2つの新しい集計手法が評価システムの予測性能に与える影響について分析する。
以上の結果から,テストケースの大部分において,MAX法が他の2手法よりも優れていることが示された。
本研究の結果は,チームのパフォーマンスを計算するために,より精巧な手法を考案する必要性を浮き彫りにした。
論文 参考訳(メタデータ) (2021-06-21T20:17:36Z) - The Evaluation of Rating Systems in Team-based Battle Royale Games [4.168733556014873]
本稿では,25,000人以上のチームバトルロイヤルマッチのリアルタイムデータセット上で,3つの人気評価システムを評価するためのいくつかの指標の有用性について検討する。
正規化割引累積ゲイン (NDCG) は信頼性が高く, 柔軟性が高かった。
論文 参考訳(メタデータ) (2021-05-28T19:22:07Z) - Deep Latent Competition: Learning to Race Using Visual Control Policies
in Latent Space [63.57289340402389]
Deep Latent Competition (DLC) は、想像力の自己プレイを通じて、競合する視覚制御ポリシーを学ぶ強化学習アルゴリズムである。
想像すると、セルフプレイは現実世界でコストのかかるサンプル生成を削減し、潜在表現は観測次元で計画を優雅にスケールできる。
論文 参考訳(メタデータ) (2021-02-19T09:00:29Z) - NeurIPS 2020 EfficientQA Competition: Systems, Analyses and Lessons
Learned [122.429985063391]
我々はNeurIPS 2020のEfficientQAコンペティションのモチベーションと組織について述べる。
コンペでは、システムは自然言語質問を入力として受け取り、自然言語応答を返すオープンドメイン質問応答(qa)に焦点を当てた。
論文 参考訳(メタデータ) (2021-01-01T01:24:34Z) - Interpretable Real-Time Win Prediction for Honor of Kings, a Popular
Mobile MOBA Esport [51.20042288437171]
本研究では,2段階空間時間ネットワーク(TSSTN)を提案する。
実世界のライブストリーミングシナリオにおける実験結果と応用により,提案したTSSTNモデルは予測精度と解釈可能性の両方において有効であることが示された。
論文 参考訳(メタデータ) (2020-08-14T12:00:58Z) - Competing Bandits: The Perils of Exploration Under Competition [99.68537519404727]
オンラインプラットフォーム上での探索と競争の相互作用について検討する。
私たちは、スタークコンペティションが企業に対して、低福祉につながる「欲張り」バンディットアルゴリズムにコミットするよう促すことに気付きました。
競争を弱めるための2つのチャンネルについて検討する。
論文 参考訳(メタデータ) (2020-07-20T14:19:08Z) - Competitive Balance in Team Sports Games [8.321949054700086]
最終的なスコア差を用いることで,競争バランスの予測基準がさらに向上することを示す。
また、慎重に選択されたチームと個々の特徴に基づいて訓練された線形モデルが、より強力なニューラルネットワークモデルの性能をほぼ達成できることも示している。
論文 参考訳(メタデータ) (2020-06-24T14:19:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。