Dynamic sensitivity of quantum Rabi model with quantum criticality
- URL: http://arxiv.org/abs/2101.01504v1
- Date: Tue, 5 Jan 2021 13:41:50 GMT
- Title: Dynamic sensitivity of quantum Rabi model with quantum criticality
- Authors: Ying Hu, Jian Huang, Jin-Feng Huang, Qiong-Tao Xie, Jie-Qiao Liao
- Abstract summary: This sensitivity can be detected by introducing an auxiliary two-level atom far-off-resonantly coupled to the cavity field of the quantum Rabi model.
We find that when the quantum Rabi model goes through the critical point, the auxiliary atom experiences a sudden decoherence, which can be characterised by a sharp decay of the Loschmidt echo.
- Score: 6.082805992647198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the dynamic sensitivity of the quantum Rabi model, which exhibits
quantum criticality in the finite-component-system case. This dynamic
sensitivity can be detected by introducing an auxiliary two-level atom
far-off-resonantly coupled to the cavity field of the quantum Rabi model. We
find that when the quantum Rabi model goes through the critical point, the
auxiliary atom experiences a sudden decoherence, which can be characterised by
a sharp decay of the Loschmidt echo. Our scheme will provide a reliable way to
observe quantum phase transition in ultrastrongly coupled quantum systems.
Related papers
- Quantum coarsening and collective dynamics on a programmable quantum simulator [27.84599956781646]
We experimentally study collective dynamics across a (2+1)D Ising quantum phase transition.
By deterministically preparing and following the evolution of ordered domains, we show that the coarsening is driven by the curvature of domain boundaries.
We quantitatively explore these phenomena and further observe long-lived oscillations of the order parameter, corresponding to an amplitude (Higgs) mode.
arXiv Detail & Related papers (2024-07-03T16:29:12Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Quantum walks and entanglement in cavity networks [0.0]
We analyze the quantum properties of multipartite quantum systems, consisting of an arbitrarily large collection of optical cavities with two-level atoms.
We explore quantum walks in such systems and determine the resulting entanglement.
The topology of torus and the non-orientable M"obius strip serve as examples of complex networks we consider.
arXiv Detail & Related papers (2024-04-17T12:46:21Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Enhancement of Quantum Sensing in a Cavity Optomechanical System around
Quantum Critical Point [3.0770434477273647]
We present a quantum phase transition in the coupling cavity-mechanical oscillator system when the coupling strength crosses a critical point, determined by the effective detuning of cavity and frequency of mechanical mode.
This result provides an alternative method to enhance the quantum sensing of some physical quantities, such as mass, charge, and weak force, in a large mass system.
arXiv Detail & Related papers (2023-03-29T06:37:30Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z) - Dynamic framework for criticality-enhanced quantum sensing [1.819932604590499]
Quantum criticality, as a fascinating quantum phenomenon, may provide significant advantages for quantum sensing.
We propose a framework for quantum sensing with a family of Hamiltonians that undergo quantum phase transitions.
It is expected to provide a route towards the implementation of criticality-enhanced quantum sensing.
arXiv Detail & Related papers (2020-08-26T05:36:46Z) - Detecting dynamical quantum phase transition via out-of-time-order
correlations in a solid-state quantum simulator [12.059058714600607]
We develop and experimentally demonstrate that out-of-time-order correlators can be used to detect nonoequilibrium phase transitions in the transverse field Ising model.
Further applications of this protocol could enable studies other of exotic phenomena such as many body localization, and tests of the holographic duality between quantum and gravitational systems.
arXiv Detail & Related papers (2020-01-17T14:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.