論文の概要: Descriptive AI Ethics: Collecting and Understanding the Public Opinion
- arxiv url: http://arxiv.org/abs/2101.05957v1
- Date: Fri, 15 Jan 2021 03:46:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-28 11:16:52.332469
- Title: Descriptive AI Ethics: Collecting and Understanding the Public Opinion
- Title(参考訳): 記述型AI倫理 - 公開意見の収集と理解
- Authors: Gabriel Lima, Meeyoung Cha
- Abstract要約: 本研究では、規範的および記述的研究が相互補完できる混合AI倫理モデルを提案する。
我々は、AIシステムの展開に対する楽観的見解と悲観的見解のギャップを埋めることにその影響について論じる。
- 参考スコア(独自算出の注目度): 10.26464021472619
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is a growing need for data-driven research efforts on how the public
perceives the ethical, moral, and legal issues of autonomous AI systems. The
current debate on the responsibility gap posed by these systems is one such
example. This work proposes a mixed AI ethics model that allows normative and
descriptive research to complement each other, by aiding scholarly discussion
with data gathered from the public. We discuss its implications on bridging the
gap between optimistic and pessimistic views towards AI systems' deployment.
- Abstract(参考訳): 自律型AIシステムの倫理的、道徳的、法的問題をどのように認識するかについて、データ駆動型研究の取り組みがますます必要になる。
これらのシステムによって引き起こされる責任ギャップに関する現在の議論はそのような例である。
本研究は,一般から収集したデータを用いて学術的な議論を支援することにより,規範的かつ記述的研究を補完するai倫理モデルを提案する。
本稿では,AIシステムの展開に対する楽観的視点と悲観的視点のギャップを埋めることの意味について論じる。
関連論文リスト
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Survey on AI Ethics: A Socio-technical Perspective [0.9374652839580183]
AIに関連する倫理的懸念には、公正性、プライバシとデータ保護、責任と説明責任、安全性と堅牢性、透明性と説明可能性、環境への影響といった課題が含まれている。
この研究は、AIを社会に展開する際の現在と将来の倫理的懸念を統一する。
論文 参考訳(メタデータ) (2023-11-28T21:00:56Z) - On the meaning of uncertainty for ethical AI: philosophy and practice [10.591284030838146]
これは、数学的推論に倫理的考察をもたらす重要な方法であると主張する。
我々は、2021年12月のOmicron型COVID-19の拡散について、英国政府に助言するために使用される競合モデルの文脈内でこれらのアイデアを実証する。
論文 参考訳(メタデータ) (2023-09-11T15:13:36Z) - Ethics in AI through the Practitioner's View: A Grounded Theory
Literature Review [12.941478155592502]
近年、AI開発における倫理的問題のプロファイルが高まり、私たちの日常生活におけるAI技術の普及に対する世間の懸念が高まっている。
我々は,AI実践者のAI倫理観を含む,38の初等実証研究の根拠的理論文献レビュー(GTLR)を行った。
我々は,AI倫理の異なる側面を特定し,理解する上で,実践者の視点からAI倫理の分類を提示する。
論文 参考訳(メタデータ) (2022-06-20T00:28:51Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
ベンチマークは、人工知能(AI)研究の技術的進歩を測定するための基盤とみられている。
AIの顕著な研究領域は倫理であり、現在、ベンチマークのセットも、AIシステムの「倫理性」を測定する一般的な方法もない。
我々は、現在と将来のAIシステムのアクションを考えるとき、倫理よりも「価値」について話す方が理にかなっていると論じる。
論文 参考訳(メタデータ) (2022-04-11T14:36:39Z) - Ethics of AI: A Systematic Literature Review of Principles and
Challenges [3.7129018407842445]
透明性、プライバシ、説明責任、公正性は、最も一般的なAI倫理原則として識別される。
倫理的知識の欠如と曖昧な原則は、AIにおける倫理を考える上で重要な課題として報告されている。
論文 参考訳(メタデータ) (2021-09-12T15:33:43Z) - An Ethical Framework for Guiding the Development of Affectively-Aware
Artificial Intelligence [0.0]
本稿では、感情認識型AIの倫理的結果(道徳的・倫理的結果)を評価するためのガイドラインを提案する。
我々は,AI開発者による倫理的責任を分離し,そのようなAIをデプロイするエンティティをビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビビ
最終的には研究者、開発者、オペレーター、規制当局、法執行機関への勧告で終わります。
論文 参考訳(メタデータ) (2021-07-29T03:57:53Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Learning from Learning Machines: Optimisation, Rules, and Social Norms [91.3755431537592]
経済的な実体の行動に最も類似したAIの領域は道徳的に良い意思決定の領域であるようだ。
近年のAIにおけるディープラーニングの成功は、そのような問題を解決するための明示的な仕様よりも暗黙的な仕様の方が優れていることを示唆している。
論文 参考訳(メタデータ) (2019-12-29T17:42:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。