論文の概要: Generative model for learning quantum ensemble via optimal transport
loss
- arxiv url: http://arxiv.org/abs/2210.10743v1
- Date: Wed, 19 Oct 2022 17:35:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-22 01:35:52.477773
- Title: Generative model for learning quantum ensemble via optimal transport
loss
- Title(参考訳): 最適輸送損失による量子アンサンブル学習のための生成モデル
- Authors: Hiroyuki Tezuka, Shumpei Uno, Naoki Yamamoto
- Abstract要約: 量子アンサンブルを学習できる量子生成モデルを提案する。
提案したモデルは、量子デバイスのヘルスチェックのような幅広い応用の道を開く。
- 参考スコア(独自算出の注目度): 0.9404723842159504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative modeling is an unsupervised machine learning framework, that
exhibits strong performance in various machine learning tasks. Recently we find
several quantum version of generative model, some of which are even proven to
have quantum advantage. However, those methods are not directly applicable to
construct a generative model for learning a set of quantum states, i.e.,
ensemble. In this paper, we propose a quantum generative model that can learn
quantum ensemble, in an unsupervised machine learning framework. The key idea
is to introduce a new loss function calculated based on optimal transport loss,
which have been widely used in classical machine learning due to its several
good properties; e.g., no need to ensure the common support of two ensembles.
We then give in-depth analysis on this measure, such as the scaling property of
the approximation error. We also demonstrate the generative modeling with the
application to quantum anomaly detection problem, that cannot be handled via
existing methods. The proposed model paves the way for a wide application such
as the health check of quantum devices and efficient initialization of quantum
computation.
- Abstract(参考訳): 生成モデリングは教師なしの機械学習フレームワークであり、さまざまな機械学習タスクで強いパフォーマンスを示す。
近年,数種類の生成モデルの量子バージョンが発見され,その一部は量子的優位性があることが証明されている。
しかし、これらの手法は量子状態の集合、すなわちアンサンブルを学ぶための生成モデルを構築するために直接適用できない。
本稿では,教師なし機械学習フレームワークを用いて,量子アンサンブルを学習可能な量子生成モデルを提案する。
重要なアイデアは、最適化された輸送損失に基づいて計算された新しい損失関数を導入することである。
次に、近似誤差のスケーリング特性など、この尺度の詳細な解析を行う。
また、既存の手法では扱えない量子異常検出問題への応用による生成モデルの適用を実証する。
提案モデルは,量子デバイスのヘルスチェックや量子計算の効率的な初期化など,幅広い応用への道を開くものである。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Shadows of quantum machine learning [2.236957801565796]
トレーニング中にのみ量子リソースを必要とする量子モデルの新たなクラスを導入し、トレーニングされたモデルの展開は古典的である。
このモデルのクラスは古典的に展開された量子機械学習において普遍的であることを証明している。
論文 参考訳(メタデータ) (2023-05-31T18:00:02Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Classical surrogates for quantum learning models [0.7734726150561088]
本稿では,訓練された量子学習モデルから効率的に得られる古典的モデルである古典的サロゲートの概念を紹介する。
我々は、よく解析された再アップロードモデルの大規模なクラスが古典的なサロゲートを持つことを示す。
論文 参考訳(メタデータ) (2022-06-23T14:37:02Z) - Entanglement Forging with generative neural network models [0.0]
ハイブリッド量子-古典的変分アンゼ」は、量子リソースオーバーヘッドを下げるために絡み合いを鍛えることができることを示す。
この方法は観測者の期待値の固定精度を達成するのに必要な測定値の数で効率的である。
論文 参考訳(メタデータ) (2022-05-02T14:29:17Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - Quantum machine learning beyond kernel methods [0.0]
パラメタライズド量子回路モデルは、カーネルの定式化よりも極めて優れた一般化性能を示すことを示す。
我々の結果は、カーネルの定式化の隣の量子機械学習モデルのより包括的な理論に向けた別のステップを構成する。
論文 参考訳(メタデータ) (2021-10-25T18:00:02Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Enhancing Generative Models via Quantum Correlations [1.6099403809839032]
確率分布から抽出したサンプルを用いた生成モデリングは教師なし機械学習の強力なアプローチである。
このような量子相関が生成モデリングの強力な資源となることを理論的に示す。
この分離を標準的な機械学習データセットで数値的にテストし、実用的な問題に耐えることを示します。
論文 参考訳(メタデータ) (2021-01-20T22:57:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。