論文の概要: A novel DL approach to PE malware detection: exploring Glove
vectorization, MCC_RCNN and feature fusion
- arxiv url: http://arxiv.org/abs/2101.08969v3
- Date: Thu, 4 Feb 2021 09:06:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-20 17:16:41.406943
- Title: A novel DL approach to PE malware detection: exploring Glove
vectorization, MCC_RCNN and feature fusion
- Title(参考訳): PEマルウェア検出のための新しいDLアプローチ:Gloveベクター化、MCC_RCNN、特徴融合
- Authors: Yuzhou Lin
- Abstract要約: モデルにフィードバックされた静的機能を用いて,DLベースの検出手法を提案する。
CNN と RNN を組み合わせた MCC_RCNN と呼ばれるニューラルネットワークモデルを実装します。
提案した分類法は他のベースライン法よりも高い予測精度を得ることができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, malware becomes more threatening. Concerning the increasing
malware variants, there comes Machine Learning (ML)-based and Deep Learning
(DL)-based approaches for heuristic detection. Nevertheless, the prediction
accuracy of both needs to be improved. In response to the above issues in the
PE malware domain, we propose the DL-based approaches for detection and use
static-based features fed up into models. The contributions are as follows: we
recapitulate existing malware detection methods. That is, we propose a
vec-torized representation model of the malware instruction layer and semantic
layer based on Glove. We implement a neural network model called MCC_RCNN
(Malware Detection and Recurrent Convolutional Neural Network), comprising of
the combination with CNN and RNN. Moreover, we provide a description of feature
fusion in static behavior levels. With the numerical results generated from
several comparative experiments towards evaluating the Glove-based
vectoriza-tion, MCC_RCNN-based classification methodology and feature fusion
stages, our proposed classification methods can obtain a higher prediction
accuracy than the other baseline methods.
- Abstract(参考訳): 近年、マルウェアの脅威が高まっている。
マルウェアの変種の増加に関して、機械学習(ml)ベースとディープラーニング(dl)ベースのヒューリスティック検出のアプローチがある。
それでも、両者の予測精度は向上する必要がある。
PEマルウェア領域における上記の問題に対して,我々は,モデルに入力された静的機能の検出と利用のためのDLベースのアプローチを提案する。
コントリビューションは以下のとおりである。 既存のマルウェア検出手法を再カプセル化する。
すなわち,Glove に基づくマルウェアの命令層と意味層のvec-torized表現モデルを提案する。
我々は、CNNとRNNを組み合わせたMCC_RCNN(Malware Detection and Recurrent Convolutional Neural Network)と呼ばれるニューラルネットワークモデルを実装した。
さらに,静的な動作レベルにおける特徴融合について記述する。
提案手法は,Glove-based vectoriza-tion, MCC_RCNN-based classification method, and feature fusion stageに対するいくつかの比較実験から得られた数値結果により,他のベースライン法よりも高い予測精度を得ることができる。
関連論文リスト
- A Novel Approach to Malicious Code Detection Using CNN-BiLSTM and Feature Fusion [2.3039261241391586]
本研究では,マルウェアのバイナリファイルをグレースケールのイメージに変換するためにminhashアルゴリズムを用いる。
この研究は、IDA Proを用いてオペコードシーケンスをデコンパイルし、抽出し、特徴ベクトル化にN-gramとtf-idfアルゴリズムを適用した。
CNN-BiLSTM融合モデルは、画像の特徴とオプコードシーケンスを同時に処理し、分類性能を向上させるように設計されている。
論文 参考訳(メタデータ) (2024-10-12T07:10:44Z) - Securing Graph Neural Networks in MLaaS: A Comprehensive Realization of Query-based Integrity Verification [68.86863899919358]
我々は機械学習におけるGNNモデルをモデル中心の攻撃から保護するための画期的なアプローチを導入する。
提案手法は,GNNの完全性に対する包括的検証スキーマを含み,トランスダクティブとインダクティブGNNの両方を考慮している。
本稿では,革新的なノード指紋生成アルゴリズムを組み込んだクエリベースの検証手法を提案する。
論文 参考訳(メタデータ) (2023-12-13T03:17:05Z) - A Comparison of Graph Neural Networks for Malware Classification [2.707154152696381]
我々は、幅広いグラフニューラルネットワーク(GNN)アーキテクチャをトレーニングし、埋め込みを生成し、それを分類します。
我々の最高のGNNモデルは、有名なMalNet-Tiny Androidマルウェアデータセットを含む以前の比較研究より優れていることが分かりました。
論文 参考訳(メタデータ) (2023-03-22T01:05:57Z) - Flexible Android Malware Detection Model based on Generative Adversarial
Networks with Code Tensor [7.417407987122394]
既存のマルウェア検出方法は、既存の悪意のあるサンプルのみを対象としている。
本稿では,マルウェアとその変異を効率的に検出する新しい手法を提案する。
論文 参考訳(メタデータ) (2022-10-25T03:20:34Z) - Graph Neural Network-based Android Malware Classification with Jumping
Knowledge [3.408873763213743]
本稿では,Android マルウェア検出のための GNN ベースの手法を提案する。
オーバースムーシング問題の影響を最小限に抑えるために跳躍知識技術を適用した。
提案手法は2つのベンチマークデータセットを用いて広範に評価されている。
論文 参考訳(メタデータ) (2022-01-19T11:29:02Z) - Malware Detection Using Frequency Domain-Based Image Visualization and
Deep Learning [16.224649756613655]
画像分類によるマルウェアの検出と可視化を行う新しい手法を提案する。
実行可能なバイナリは、離散コサイン変換ドメイン内のバイトのNグラム(N=2)のカウントから得られるグレースケール画像として表現される。
浅いニューラルネットワークは分類のために訓練され、その精度は転送学習を用いて訓練されるresnetのようなディープネットワークアーキテクチャと比較される。
論文 参考訳(メタデータ) (2021-01-26T06:07:46Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Understanding and Diagnosing Vulnerability under Adversarial Attacks [62.661498155101654]
ディープニューラルネットワーク(DNN)は敵の攻撃に弱いことが知られている。
本稿では,潜在変数の分類に使用される特徴を説明するために,新しい解釈可能性手法であるInterpretGANを提案する。
また、各層がもたらす脆弱性を定量化する最初の診断方法も設計する。
論文 参考訳(メタデータ) (2020-07-17T01:56:28Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
ディープラーニングモデルは、トロイの木馬攻撃に対して脆弱で、攻撃者はトレーニング中にバックドアをインストールして、結果のモデルが小さなトリガーパッチで汚染されたサンプルを誤識別させる。
本稿では,ラベル数と計算複雑性が一致しない新たなトリガリバースエンジニアリング手法を提案する。
実験では,提案手法が純モデルからトロイの木馬モデルを分離する際の完全なスコアを達成できることが観察された。
論文 参考訳(メタデータ) (2020-06-10T04:12:53Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
論文 参考訳(メタデータ) (2020-04-30T20:42:17Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。