論文の概要: LDLE: Low Distortion Local Eigenmaps
- arxiv url: http://arxiv.org/abs/2101.11055v1
- Date: Tue, 26 Jan 2021 19:55:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-14 03:11:57.379472
- Title: LDLE: Low Distortion Local Eigenmaps
- Title(参考訳): LDLE: 低歪み局所固有写像
- Authors: Dhruv Kohli, Alexander Cloninger, Gal Mishne
- Abstract要約: 本稿では、低次元のデータセットの低歪み局所ビューのセットを構築し、それらを登録してグローバル埋め込みを取得するマニホールド学習技術である低歪み局所固有マップ(LDLE)を紹介します。
局所ビューはグラフラプラシアンのグローバル固有ベクトルを用いて構築され、procrustes分析を用いて登録される。
- 参考スコア(独自算出の注目度): 77.02534963571597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Low Distortion Local Eigenmaps (LDLE), a manifold learning
technique which constructs a set of low distortion local views of a dataset in
lower dimension and registers them to obtain a global embedding. The local
views are constructed using the global eigenvectors of the graph Laplacian and
are registered using Procrustes analysis. The choice of these eigenvectors may
vary across the regions. In contrast to existing techniques, LDLE is more
geometric and can embed manifolds without boundary as well as non-orientable
manifolds into their intrinsic dimension.
- Abstract(参考訳): 本稿では、低次元のデータセットの低歪み局所ビューのセットを構築し、それらを登録してグローバル埋め込みを取得するマニホールド学習技術である低歪み局所固有マップ(LDLE)を紹介します。
局所ビューはグラフラプラシアンのグローバル固有ベクトルを用いて構築され、procrustes分析を用いて登録される。
これらの固有ベクトルの選択は地域によって異なる。
既存の手法とは対照的に、LDLEはより幾何学的であり、境界のない多様体や非向き多様体を固有の次元に埋め込むことができる。
関連論文リスト
- Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
教師なし学習は、潜在的に大きな高次元データセットの基盤構造を捉えることを目的としている。
本研究では、最適輸送のレンズの下でこれらのアプローチを再検討し、Gromov-Wasserstein問題と関係を示す。
これにより、分散還元と呼ばれる新しい一般的なフレームワークが公開され、DRとクラスタリングを特別なケースとして回復し、単一の最適化問題内でそれらに共同で対処することができる。
論文 参考訳(メタデータ) (2024-02-03T19:00:19Z) - LDReg: Local Dimensionality Regularized Self-Supervised Learning [31.0201280709395]
次元崩壊は「埋没」現象としても知られ、下流のタスクにおける劣化したパフォーマンスの主要な原因の1つである。
これまでの研究は、SSLのグローバルレベルでの次元的崩壊問題を調査してきた。
我々は,$textitlocal dimensionality regularization (LDReg) という手法を提案する。
論文 参考訳(メタデータ) (2024-01-19T03:50:19Z) - Scalable manifold learning by uniform landmark sampling and constrained
locally linear embedding [0.6144680854063939]
本研究では,大規模・高次元データを効率的に操作できるスケーラブルな多様体学習法を提案する。
異なるタイプの合成データセットと実世界のベンチマークにおけるSCMLの有効性を実証的に検証した。
scMLはデータサイズや埋め込み次元の増大とともにスケールし、グローバル構造を保存する上で有望なパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-01-02T08:43:06Z) - Preserving local densities in low-dimensional embeddings [37.278617643507815]
tSNEやUMAPのような最先端の手法は、高次元データに隠された局所構造を明らかにするのに優れている。
しかし, これらの手法は, 密度の相対的差など, 局所的な特性の再構築に失敗することを示す。
局所密度をほぼ保存するdtSNEを提案する。
論文 参考訳(メタデータ) (2023-01-31T16:11:54Z) - Fiberwise dimensionality reduction of topologically complex data with
vector bundles [0.0]
本稿では,ベクトルバンドルを用いてトポロジ的に複雑なデータセットをモデル化する。
基底空間は大規模位相であり、ファイバーは局所幾何学である。
これにより、大規模なトポロジーを保ちながら繊維の寸法を小さくすることができる。
論文 参考訳(メタデータ) (2022-06-13T22:53:46Z) - Contrastive Neighborhood Alignment [81.65103777329874]
本稿では,学習特徴のトポロジを維持するための多様体学習手法であるContrastive Neighborhood Alignment(CNA)を提案する。
対象モデルは、対照的な損失を用いて、ソース表現空間の局所構造を模倣することを目的としている。
CNAは3つのシナリオで説明される: 多様体学習、モデルが元のデータの局所的なトポロジーを次元還元された空間で維持する、モデル蒸留、小さな学生モデルがより大きな教師を模倣するために訓練される、レガシーモデル更新、より強力なモデルに置き換えられる、という3つのシナリオである。
論文 参考訳(メタデータ) (2022-01-06T04:58:31Z) - Low-Rank Subspaces in GANs [101.48350547067628]
この研究は、GAN生成をより正確に制御できる低ランクな部分空間を導入している。
LowRankGAN は属性多様体の低次元表現を見つけることができる。
さまざまなデータセットでトレーニングされた最先端のGANモデル(StyleGAN2やBigGANなど)の実験は、私たちのLowRankGANの有効性を示しています。
論文 参考訳(メタデータ) (2021-06-08T16:16:32Z) - A Local Similarity-Preserving Framework for Nonlinear Dimensionality
Reduction with Neural Networks [56.068488417457935]
本稿では,Vec2vecという新しい局所非線形手法を提案する。
ニューラルネットワークを訓練するために、マトリックスの近傍類似度グラフを構築し、データポイントのコンテキストを定義します。
8つの実データセットにおけるデータ分類とクラスタリングの実験により、Vec2vecは統計仮説テストにおける古典的な次元削減法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-03-10T23:10:47Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
次元削減法は、高次元データの可視化と解釈に有用な手段を提供する。
多くの一般的な手法は単純な2次元のマニフォールドでも劇的に失敗する。
本稿では,グローバルな構造を座標として組み込んだ,新しいインクリメンタルな空間推定器の埋め込み手法を提案する。
実験により,本アルゴリズムは実世界および合成データセットに新規で興味深い埋め込みを復元することを示した。
論文 参考訳(メタデータ) (2020-07-07T10:04:28Z) - Markov-Lipschitz Deep Learning [37.7499958388076]
局所滑らか性(英語版)(LIS)と呼ばれる事前の制約は、層をまたいで課せられ、マルコフ確率場(MRF)-ギブス分布に符号化される。
これにより、局所的な幾何学的保存とロバスト性に対する最良の解が導かれる。
実験,比較,アブレーション実験により,MLDLの多様体学習および多様体データ生成における大きな利点が示された。
論文 参考訳(メタデータ) (2020-06-15T09:46:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。