Threshold for a discrete-variable sensor of quantum reservoirs
- URL: http://arxiv.org/abs/2102.00609v2
- Date: Thu, 20 May 2021 15:39:43 GMT
- Title: Threshold for a discrete-variable sensor of quantum reservoirs
- Authors: Wei Wu, Zhen Peng, Si-Yuan Bai, Jun-Hong An
- Abstract summary: Quantum sensing employs quantum resources of a sensor to attain a smaller estimation error of physical quantities than the limit constrained by classical physics.
Previous studies showed that the reservoir-induced degradation to quantum resources of the sensor makes the errors divergent with the increase of encoding time.
We here propose a scheme to use $N$ two-level systems as the sensor to measure a quantum reservoir.
- Score: 4.848282580687173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum sensing employs quantum resources of a sensor to attain a smaller
estimation error of physical quantities than the limit constrained by classical
physics. To measure a quantum reservoir, which is significant in decoherence
control, a nonunitary-encoding sensing scheme becomes necessary. However,
previous studies showed that the reservoir-induced degradation to quantum
resources of the sensor makes the errors divergent with the increase of
encoding time. We here propose a scheme to use $N$ two-level systems as the
sensor to measure a quantum reservoir. A threshold, above which the
shot-noise-limited sensing error saturates or even persistently decreases with
the encoding time, is uncovered. Our analysis reveals that it is due to the
formation of a bound state of the total sensor-reservoir system. Solving the
outstanding error-divergency problem in previous studies, our result supplies
an insightful guideline in realizing a sensitive measurement of quantum
reservoirs.
Related papers
- Bosonic Entanglement and Quantum Sensing from Energy Transfer in two-tone Floquet Systems [1.2499537119440245]
Quantum-enhanced sensors, which surpass the standard quantum limit (circuit) and approach the fundamental precision limits dictated by quantum mechanics, are finding applications across a wide range of scientific fields.
We introduce entanglement and preserve quantum information among many particles in a sensing circuit.
We propose a superconducting-entangled sensor in the microwave regime, highlighting its potential for practical applications in high-precision measurements.
arXiv Detail & Related papers (2024-10-15T00:48:01Z) - Quantum-enhanced learning with a controllable bosonic variational sensor network [0.40964539027092906]
Supervised learning assisted by an entangled sensor network (SLAEN)
We propose a SLAEN capable of handling nonlinear data classification tasks.
We uncover a threshold phenomenon in classification error -- when the energy of probes exceeds a certain threshold, the error drastically to zero.
arXiv Detail & Related papers (2024-04-28T19:41:40Z) - Optical Quantum Sensing for Agnostic Environments via Deep Learning [59.088205627308]
We introduce an innovative Deep Learning-based Quantum Sensing scheme.
It enables optical quantum sensors to attain Heisenberg limit (HL) in agnostic environments.
Our findings offer a new lens through which to accelerate optical quantum sensing tasks.
arXiv Detail & Related papers (2023-11-13T09:46:05Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Integrable quantum many-body sensors for AC field sensing [0.0]
We show that integrable many-body systems can be exploited efficiently for detecting the amplitude of an AC field.
We show that the proposed protocol can also be realized in near-term quantum simulators.
arXiv Detail & Related papers (2021-05-27T23:52:22Z) - Non-Markovian Sensing of a Quantum Reservoir [4.08251546408275]
We propose a nonunitary-encoding optical sensing scheme to measure the spectral density of a quantum reservoir.
Our result shows that it is due to the formation of a sensor-reservoir bound state.
arXiv Detail & Related papers (2020-05-18T09:42:11Z) - Remote Quantum Sensing with Heisenberg Limited Sensitivity in Many Body
Systems [0.0]
We propose a new way of doing quantum sensing.
It exploits the dynamics of a many-body system, in a product state, along with a sequence of projective measurements in a specific basis.
arXiv Detail & Related papers (2020-03-04T19:55:57Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.