論文の概要: Novel Deep neural networks for solving Bayesian statistical inverse
- arxiv url: http://arxiv.org/abs/2102.03974v1
- Date: Mon, 8 Feb 2021 02:54:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-09 15:15:13.904670
- Title: Novel Deep neural networks for solving Bayesian statistical inverse
- Title(参考訳): ベイズ統計逆数解法のための新しいディープニューラルネットワーク
- Authors: Harbir Antil, Howard C Elman, Akwum Onwunta, Deepanshu Verma
- Abstract要約: MCMCルーチン内での前方解に対する分数的なディープニューラルネットワークに基づくアプローチを提案する。
近似誤差の推定について考察し、いくつかの数値例を通してアプローチの効率について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the simulation of Bayesian statistical inverse problems governed
by large-scale linear and nonlinear partial differential equations (PDEs).
Markov chain Monte Carlo (MCMC) algorithms are standard techniques to solve
such problems. However, MCMC techniques are computationally challenging as they
require several thousands of forward PDE solves. The goal of this paper is to
introduce a fractional deep neural network based approach for the forward
solves within an MCMC routine. Moreover, we discuss some approximation error
estimates and illustrate the efficiency of our approach via several numerical
examples.
- Abstract(参考訳): 大規模線形および非線形偏微分方程式(PDE)によるベイズ統計逆問題のシミュレーションを検討する。
マルコフ連鎖モンテカルロ (MCMC) アルゴリズムはそのような問題を解決する標準的な手法である。
しかし、MCMC技術は数千のPDE解を必要とするため、計算的に困難である。
本研究の目的は,MCMCルーチン内での前方解に対する分数的なディープニューラルネットワークに基づくアプローチの導入である。
さらに,いくつかの近似誤差推定について検討し,いくつかの数値例を通して,提案手法の効率性を示す。
関連論文リスト
- Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Bayesian polynomial neural networks and polynomial neural ordinary
differential equations [4.550705124365277]
ニューラルネットワークとニューラル常微分方程式(ODE)によるシンボリック回帰は、多くの科学・工学問題の方程式回復のための強力なアプローチである。
これらの手法はモデルパラメータの点推定を提供しており、現在ノイズの多いデータに対応できない。
この課題は、ラプラス近似、マルコフ連鎖モンテカルロサンプリング法、ベイズ変分推定法の開発と検証によって解決される。
論文 参考訳(メタデータ) (2023-08-17T05:42:29Z) - Large-scale Bayesian Structure Learning for Gaussian Graphical Models using Marginal Pseudo-likelihood [0.26249027950824516]
我々は2つの新しいマルコフ連鎖モンテカルロ探索アルゴリズムを導入する。
これらのアルゴリズムは、1000変数の大規模問題であっても、標準コンピュータ上でわずか数分で信頼性の高い結果を提供できる。
また,ヒトおよびマウスの遺伝子発現研究における中・大規模応用における本手法の有用性について述べる。
論文 参考訳(メタデータ) (2023-06-30T20:37:40Z) - Bayesian neural networks via MCMC: a Python-based tutorial [0.196629787330046]
変分推論とマルコフ連鎖モンテカルロサンプリング法を用いてベイズ推定を行う。
このチュートリアルはPythonのコードに、その使用と拡張を可能にするデータとインストラクションを提供する。
論文 参考訳(メタデータ) (2023-04-02T02:19:15Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - A Neural Network Approach for Homogenization of Multiscale Problems [1.6244541005112747]
マルチスケール問題の均質化に対するニューラルネットワークに基づくアプローチを提案する。
提案手法はブラウン歩行器を組み込んで,マルチスケールPDEソリューションのマクロな記述を求める。
線形および非線形多スケール問題の組による提案手法の有効性とロバスト性を検証した。
論文 参考訳(メタデータ) (2022-06-04T17:50:00Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Scaling Up Bayesian Uncertainty Quantification for Inverse Problems
using Deep Neural Networks [2.455468619225742]
本稿では,エミュレーションフェーズのためのディープニューラルネットワーク(DNN)モデルに基づくベイズ推論のための新しいCESアプローチを提案する。
結果として得られるアルゴリズムは、計算効率が向上するだけでなく、トレーニングセットに対する感度も低下する。
全体として,提案手法はEmphReduced-Dimension Emulative Autoencoder Monte Carlo (DREAM)アルゴリズムと呼ばれ,物理制約された逆問題においてベイズUQを数千次元まで拡張することができる。
論文 参考訳(メタデータ) (2021-01-11T14:18:38Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
本稿では,マスク付き自己回帰ニューラルネットワークを用いて解空間上の均一分布をモデル化するクロスエントロピー法(CEM)を提案する。
我々のアルゴリズムは複雑な解空間を表現でき、様々な異なる解領域を追跡できる。
論文 参考訳(メタデータ) (2020-02-17T20:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。