論文の概要: A Neural Network Approach for Homogenization of Multiscale Problems
- arxiv url: http://arxiv.org/abs/2206.02032v1
- Date: Sat, 4 Jun 2022 17:50:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-07 15:27:17.076960
- Title: A Neural Network Approach for Homogenization of Multiscale Problems
- Title(参考訳): ニューラルネットワークによるマルチスケール問題の均質化
- Authors: Jihun Han and Yoonsang Lee
- Abstract要約: マルチスケール問題の均質化に対するニューラルネットワークに基づくアプローチを提案する。
提案手法はブラウン歩行器を組み込んで,マルチスケールPDEソリューションのマクロな記述を求める。
線形および非線形多スケール問題の組による提案手法の有効性とロバスト性を検証した。
- 参考スコア(独自算出の注目度): 1.6244541005112747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a neural network-based approach to the homogenization of
multiscale problems. The proposed method uses a derivative-free formulation of
a training loss, which incorporates Brownian walkers to find the macroscopic
description of a multiscale PDE solution. Compared with other network-based
approaches for multiscale problems, the proposed method is free from the design
of hand-crafted neural network architecture and the cell problem to calculate
the homogenization coefficient. The exploration neighborhood of the Brownian
walkers affects the overall learning trajectory. We determine the bounds of
micro- and macro-time steps that capture the local heterogeneous and global
homogeneous solution behaviors, respectively, through a neural network. The
bounds imply that the computational cost of the proposed method is independent
of the microscale periodic structure for the standard periodic problems. We
validate the efficiency and robustness of the proposed method through a suite
of linear and nonlinear multiscale problems with periodic and random field
coefficients.
- Abstract(参考訳): マルチスケール問題の均質化に対するニューラルネットワークに基づくアプローチを提案する。
提案手法は,多スケールpde溶液のマクロな記述を見つけるためにブラウンウォーカーを組み込んだトレーニング損失の導出のない定式化を用いる。
マルチスケール問題に対する他のネットワークベースアプローチと比較して,提案手法は手作りニューラルネットワークアーキテクチャの設計や,均質化係数を計算するためのセル問題とは無関係である。
ブラウニアン・ウォーカーの探検地区は、全体の学習軌道に影響する。
ニューラルネットワークを用いて局所的均一性および大域的均一性解の挙動を捕捉するマイクロステップとマクロタイムステップの境界を決定する。
境界は,提案手法の計算コストが,標準周期問題に対するマイクロスケール周期構造とは無関係であることを示す。
線形および非線形な多スケール問題と周期的およびランダムな場係数の組による提案手法の有効性とロバスト性を検証した。
関連論文リスト
- A neural network approach for solving the Monge-Ampère equation with transport boundary condition [0.0]
本稿では,輸送境界条件でモンジュ・アンペア方程式を解くためのニューラルネットワークに基づく新しい手法を提案する。
我々は、方程式の残差、境界条件、凸性制約を含む損失関数を最小化することにより、多層パーセプトロンネットワークを利用して近似解を学習する。
論文 参考訳(メタデータ) (2024-10-25T11:54:00Z) - Solutions to Elliptic and Parabolic Problems via Finite Difference Based Unsupervised Small Linear Convolutional Neural Networks [1.124958340749622]
線形畳み込みニューラルネットワークを用いてPDEの有限差分解を直接推定するために、トレーニングデータを必要としない完全に教師なしのアプローチを提案する。
提案手法は、類似の有限差分に基づくアプローチよりもパラメータを著しく少なくし、また、いくつかの選択された楕円型および放物型問題に対する真の解に匹敵する精度を示す。
論文 参考訳(メタデータ) (2023-11-01T03:15:10Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - A Block-Coordinate Approach of Multi-level Optimization with an
Application to Physics-Informed Neural Networks [0.0]
非線形最適化問題の解法として多レベルアルゴリズムを提案し,その評価複雑性を解析する。
物理インフォームドニューラルネットワーク (PINN) を用いた偏微分方程式の解に適用し, 提案手法がより良い解法と計算量を大幅に削減することを示す。
論文 参考訳(メタデータ) (2023-05-23T19:12:02Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Accelerated Solutions of Coupled Phase-Field Problems using Generative
Adversarial Networks [0.0]
我々は,エンコーダデコーダに基づく条件付きGeneLSTM層を用いたニューラルネットワークに基づく新しいフレームワークを開発し,Cahn-Hilliardマイクロ構造方程式を解く。
トレーニングされたモデルはメッシュとスケールに依存しないため、効果的なニューラル演算子としての応用が保証される。
論文 参考訳(メタデータ) (2022-11-22T08:32:22Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
フィルタ方程式は、数値天気予報、金融、工学など、多くの現実の応用において中心的な役割を果たす。
フィルタリング方程式の解を近似する古典的なアプローチの1つは、分割法と呼ばれるPDEにインスパイアされた方法を使うことである。
我々はこの手法をニューラルネットワーク表現と組み合わせて、信号プロセスの非正規化条件分布の近似を生成する。
論文 参考訳(メタデータ) (2022-01-10T11:01:36Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。