CG-CNN: Self-Supervised Feature Extraction Through Contextual Guidance and Transfer Learning
- URL: http://arxiv.org/abs/2103.01566v3
- Date: Sat, 19 Oct 2024 23:03:26 GMT
- Title: CG-CNN: Self-Supervised Feature Extraction Through Contextual Guidance and Transfer Learning
- Authors: Olcay Kursun, Ahmad Patooghy, Peyman Poursani, Oleg V. Favorov,
- Abstract summary: Contextually Guided Convolutional Neural Networks (CG-CNNs) employ self-supervision and contextual information to develop transferable features across diverse domains.
This work showcases the adaptability of CG-CNNs through applications to various datasets such as Caltech and Brodatz textures, the VibTac-12 tactile dataset, hyperspectral images, and challenges like the XOR problem and text analysis.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contextually Guided Convolutional Neural Networks (CG-CNNs) employ self-supervision and contextual information to develop transferable features across diverse domains, including visual, tactile, temporal, and textual data. This work showcases the adaptability of CG-CNNs through applications to various datasets such as Caltech and Brodatz textures, the VibTac-12 tactile dataset, hyperspectral images, and challenges like the XOR problem and text analysis. In text analysis, CG-CNN employs an innovative embedding strategy that utilizes the context of neighboring words for classification, while in visual and signal data, it enhances feature extraction by exploiting spatial information. CG-CNN mimics the context-guided unsupervised learning mechanisms of biological neural networks and it can be trained to learn its features on limited-size datasets. Our experimental results on natural images reveal that CG-CNN outperforms comparable first-layer features of well-known deep networks such as AlexNet, ResNet, and GoogLeNet in terms of transferability and classification accuracy. In text analysis, CG-CNN learns word embeddings that outperform traditional models like Word2Vec in tasks such as the 20 Newsgroups text classification. Furthermore, ongoing development involves training CG-CNN on outputs from another CG-CNN to explore multi-layered architectures, aiming to construct more complex and descriptive features. This scalability and adaptability to various data types underscore the potential of CG-CNN to handle a wide range of applications, making it a promising architecture for tackling diverse data representation challenges.
Related papers
- Advanced Text Analytics -- Graph Neural Network for Fake News Detection in Social Media [0.0]
Advanced Text Analysis Graph Neural Network (ATA-GNN) is proposed in this paper.
ATA-GNN employs innovative topic modelling (clustering) techniques to identify typical words for each topic.
Extensive evaluations on widely used benchmark datasets demonstrate that ATA-GNN surpasses the performance of current GNN-based FND methods.
arXiv Detail & Related papers (2025-02-22T09:17:33Z) - Image Segmentation: Inducing graph-based learning [4.499833362998488]
This study explores the potential of graph neural networks (GNNs) to enhance semantic segmentation across diverse image modalities.
GNNs explicitly model relationships between image regions by constructing and operating on a graph representation of the image features.
Our analysis demonstrates the versatility of GNNs in addressing diverse segmentation challenges and highlights their potential to improve segmentation accuracy in various applications.
arXiv Detail & Related papers (2025-01-07T13:09:44Z) - Hyperbolic Benchmarking Unveils Network Topology-Feature Relationship in GNN Performance [0.5416466085090772]
We introduce a comprehensive benchmarking framework for graph machine learning.
We generate synthetic networks with realistic topological properties and node feature vectors.
Results highlight the dependency of model performance on the interplay between network structure and node features.
arXiv Detail & Related papers (2024-06-04T20:40:06Z) - CNN2GNN: How to Bridge CNN with GNN [59.42117676779735]
We propose a novel CNN2GNN framework to unify CNN and GNN together via distillation.
The performance of distilled boosted'' two-layer GNN on Mini-ImageNet is much higher than CNN containing dozens of layers such as ResNet152.
arXiv Detail & Related papers (2024-04-23T08:19:08Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Efficient and effective training of language and graph neural network
models [36.00479096375565]
We put forth an efficient and effective framework termed language model GNN (LM-GNN) to jointly train large-scale language models and graph neural networks.
The effectiveness in our framework is achieved by applying stage-wise fine-tuning of the BERT model first with heterogenous graph information and then with a GNN model.
We evaluate the LM-GNN framework in different datasets performance and showcase the effectiveness of the proposed approach.
arXiv Detail & Related papers (2022-06-22T00:23:37Z) - Privacy-Preserving Graph Neural Network Training and Inference as a
Cloud Service [15.939214141337803]
SecGNN is built from a synergy of insights on lightweight cryptography and machine learning techniques.
We show that SecGNN achieves comparable training and inference accuracy, with practically affordable performance.
arXiv Detail & Related papers (2022-02-16T02:57:10Z) - Scene Understanding for Autonomous Driving [0.0]
We study the behaviour of different configurations of RetinaNet, Faster R-CNN and Mask R-CNN presented in Detectron2.
We observe a significant improvement in performance after fine-tuning these models on the datasets of interest.
We run inference in unusual situations using out of context datasets, and present interesting results.
arXiv Detail & Related papers (2021-05-11T09:50:05Z) - Video-based Facial Expression Recognition using Graph Convolutional
Networks [57.980827038988735]
We introduce a Graph Convolutional Network (GCN) layer into a common CNN-RNN based model for video-based facial expression recognition.
We evaluate our method on three widely-used datasets, CK+, Oulu-CASIA and MMI, and also one challenging wild dataset AFEW8.0.
arXiv Detail & Related papers (2020-10-26T07:31:51Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - Embedded Encoder-Decoder in Convolutional Networks Towards Explainable
AI [0.0]
This paper proposes a new explainable convolutional neural network (XCNN) which represents important and driving visual features of stimuli.
The experimental results on the CIFAR-10, Tiny ImageNet, and MNIST datasets showed the success of our algorithm (XCNN) to make CNNs explainable.
arXiv Detail & Related papers (2020-06-19T15:49:39Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.