Quantum metrology for non-Markovian processes
- URL: http://arxiv.org/abs/2103.02619v2
- Date: Tue, 3 Aug 2021 12:43:18 GMT
- Title: Quantum metrology for non-Markovian processes
- Authors: Anian Altherr and Yuxiang Yang
- Abstract summary: In this Letter, we establish a general framework of non-Markovian quantum metrology.
For any parametrized non-Markovian process on a finite-dimensional system, we derive a formula for the maximal amount of quantum Fisher information.
We design an algorithm that evaluates this quantum Fisher information via semidefinite programming.
- Score: 3.5509551353363644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum metrology is a rapidly developing branch of quantum technologies.
While various theories have been established on quantum metrology for Markovian
processes, i.e., quantum channel estimation, quantum metrology for
non-Markovian processes is much less explored. In this Letter, we establish a
general framework of non-Markovian quantum metrology. For any parametrized
non-Markovian process on a finite-dimensional system, we derive a formula for
the maximal amount of quantum Fisher information that can be extracted from it
by an optimally controlled probe state. In addition, we design an algorithm
that evaluates this quantum Fisher information via semidefinite programming. We
apply our framework to noisy frequency estimation, where we find that the
optimal performance of quantum metrology is better in the non-Markovian
scenario than in the Markovian scenario and explore the possibility of
efficient sensing via simple variational circuits.
Related papers
- Variational quantum state preparation for quantum-enhanced metrology in noisy systems [0.7652747219811168]
We simulate a low-depth variational quantum circuit (VQC) composed of a sequence of global rotations and entangling operations applied to a chain of qubits subject to dephasing noise.
We find that regardless of the details of the entangling operation implemented in the VQC, the optimal quantum states can be broadly classified into a trio of qualitative regimes.
Our findings are relevant for designing optimal state-preparation strategies for next-generation quantum sensors exploiting entanglement.
arXiv Detail & Related papers (2024-06-04T00:09:05Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum Speedups in Regret Analysis of Infinite Horizon Average-Reward Markov Decision Processes [32.07657827173262]
We introduce an innovative quantum framework for the agent's engagement with an unknown MDP.
We show that the quantum advantage in mean estimation leads to exponential advancements in regret guarantees for infinite horizon Reinforcement Learning.
arXiv Detail & Related papers (2023-10-18T03:17:51Z) - Semi-device-independent certification of quantum non-Markovianity using
sequential Random Access Codes [0.3262230127283452]
We investigate multi-time processes using the process matrix formalism.
We show that the presence of a quantum non-Markovian environment plays a significant role in enhancing the communication capacity.
arXiv Detail & Related papers (2023-09-28T06:21:24Z) - Selective and efficient quantum process tomography for non-trace
preserving maps: a superconducting quantum processor implementation [0.0]
We describe a general type of quantum process that does not preserve the trace of the input quantum state.
We show that with the aid of it a priori information on the losses structure of the quantum channel, the reconstruction can be adapted to reconstruct the non-trace-preserving map.
Our results show that it is possible to efficiently reconstruct non trace-preserving processes, with high precision, and with significantly higher fidelity than when the process is assumed to be trace-preserving.
arXiv Detail & Related papers (2022-05-20T22:36:16Z) - An Introduction to Quantum Machine Learning for Engineers [36.18344598412261]
Quantum machine learning is emerging as a dominant paradigm to program gate-based quantum computers.
This book provides a self-contained introduction to quantum machine learning for an audience of engineers with a background in probability and linear algebra.
arXiv Detail & Related papers (2022-05-11T12:10:52Z) - Quantum Information Techniques for Quantum Metrology [0.0]
Main goal of quantum metrology is to estimate unknown parameters as accurately as possible.
By using quantum resources as probes, it is possible to attain a measurement precision that would be otherwise impossible using the best classical strategies.
This thesis explores how quantum metrology can be enhanced with other quantum techniques when appropriate.
arXiv Detail & Related papers (2022-01-05T10:19:25Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - A variational toolbox for quantum multi-parameter estimation [0.7734726150561088]
We introduce a general framework which allows for sequential updates of variational parameters to improve probe states and measurements.
We then demonstrate the practical functioning of the approach through numerical simulations.
We prove the validity of a general parameter-shift rule for noisy evolutions.
arXiv Detail & Related papers (2020-06-11T10:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.