論文の概要: Self-learning Machines based on Hamiltonian Echo Backpropagation
- arxiv url: http://arxiv.org/abs/2103.04992v1
- Date: Mon, 8 Mar 2021 18:35:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-11 09:47:04.535351
- Title: Self-learning Machines based on Hamiltonian Echo Backpropagation
- Title(参考訳): ハミルトンエコーバックプロパゲーションに基づく自己学習マシン
- Authors: Victor Lopez-Pastor, Florian Marquardt
- Abstract要約: 任意の時間可逆ハミルトンシステムにおける自己学習のための一般的なスキームを紹介します。
結合非線形波動場の場合,このような自己学習マシンの訓練を数値的に示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A physical self-learning machine can be defined as a nonlinear dynamical
system that can be trained on data (similar to artificial neural networks), but
where the update of the internal degrees of freedom that serve as learnable
parameters happens autonomously. In this way, neither external processing and
feedback nor knowledge of (and control of) these internal degrees of freedom is
required. We introduce a general scheme for self-learning in any
time-reversible Hamiltonian system. We illustrate the training of such a
self-learning machine numerically for the case of coupled nonlinear wave
fields.
- Abstract(参考訳): 物理的な自己学習マシンは、データ(人工ニューラルネットワークと同様)で訓練できる非線形動的システムとして定義することができるが、学習可能なパラメータとして機能する内部自由度の更新が自律的に行われる。
このように、外部処理やフィードバック、これらの内部自由度に関する知識(および制御)は必要とされない。
任意の時間可逆ハミルトンシステムにおける自己学習のための一般的なスキームを紹介します。
結合非線形波動場の場合,このような自己学習マシンの訓練を数値的に示す。
関連論文リスト
- Reconstructing dynamics from sparse observations with no training on target system [0.0]
提案するハイブリッド機械学習フレームワークのパワーは,多くの原型非線形力学系を用いて実証された。
このフレームワークは、トレーニングデータが存在しない極端な状況において、複雑で非線形なダイナミクスを再構築するパラダイムを提供する。
論文 参考訳(メタデータ) (2024-10-28T17:05:04Z) - A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learningはニューラルネットワークを"時間とともに"学習するための新しい統合フレームワーク
i)外部ソフトウェアソルバを必要とせずに統合できる、(ii)フィードフォワードおよびリカレントネットワークにおける勾配に基づく学習の概念を一般化する、(iii)新しい視点で開放する、という微分方程式に基づいている。
論文 参考訳(メタデータ) (2024-09-18T14:57:13Z) - Controlling dynamical systems to complex target states using machine
learning: next-generation vs. classical reservoir computing [68.8204255655161]
機械学習を用いた非線形力学系の制御は、システムを周期性のような単純な振る舞いに駆動するだけでなく、より複雑な任意の力学を駆動する。
まず, 従来の貯水池計算が優れていることを示す。
次のステップでは、これらの結果を異なるトレーニングデータに基づいて比較し、代わりに次世代貯水池コンピューティングを使用する別のセットアップと比較する。
その結果、通常のトレーニングデータに対して同等のパフォーマンスを提供する一方で、次世代RCは、非常に限られたデータしか利用できない状況において、著しくパフォーマンスが向上していることがわかった。
論文 参考訳(メタデータ) (2023-07-14T07:05:17Z) - Port-Hamiltonian Neural Networks for Learning Explicit Time-Dependent
Dynamical Systems [2.6084034060847894]
動的システムの時間的挙動を正確に学習するには、十分な学習バイアスを持つモデルが必要である。
近年のイノベーションは、ハミルトン形式とラグランジュ形式をニューラルネットワークに組み込んでいる。
提案したエンポート・ハミルトンニューラルネットワークは,非線形物理系の実利的な力学を効率的に学習できることを示す。
論文 参考訳(メタデータ) (2021-07-16T17:31:54Z) - Controlling nonlinear dynamical systems into arbitrary states using
machine learning [77.34726150561087]
機械学習(ML)を活用した,新しい完全データ駆動制御方式を提案する。
最近開発されたMLに基づく複雑なシステムの予測機能により、非線形系は任意の初期状態から来る任意の動的対象状態に留まることが証明された。
必要なデータ量が少なく,柔軟性の高いコントロールスキームを備えることで,工学から医学まで幅広い応用の可能性について簡単に議論する。
論文 参考訳(メタデータ) (2021-02-23T16:58:26Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Knowledge-Based Learning of Nonlinear Dynamics and Chaos [3.673994921516517]
本稿では,非線形システムから観測結果に基づいて予測モデルを抽出するための普遍的な学習フレームワークを提案する。
我々のフレームワークは、非線形システムを連続時間系として自然にモデル化するため、第一原理知識を容易に組み込むことができる。
論文 参考訳(メタデータ) (2020-10-07T13:50:13Z) - Inferring Global Dynamics Using a Learning Machine [5.07635313657742]
学習機械を用いてある程度の目標を達成することができることを示す。
単調にコスト関数を減少させる適切なトレーニング戦略に従って、異なるトレーニング段階の学習機は異なるパラメータセットでシステムを模倣することができる。
論文 参考訳(メタデータ) (2020-09-28T02:54:44Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
状態遷移が既知の状態-作用対の特徴埋め込みに線形に依存する非線形力学系のクラスについて検討する。
そこで本稿では, トラジェクティブ・プランニング, トラジェクティブ・トラッキング, システムの再推定という3つのステップを繰り返すことで, この問題を解決するためのアクティブ・ラーニング・アプローチを提案する。
本手法は, 非線形力学系を標準線形回帰の統計速度と同様, パラメトリック速度で推定する。
論文 参考訳(メタデータ) (2020-06-18T04:54:11Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。