Emergent eigenstate solution for generalized thermalization
- URL: http://arxiv.org/abs/2103.05012v1
- Date: Mon, 8 Mar 2021 19:00:04 GMT
- Title: Emergent eigenstate solution for generalized thermalization
- Authors: Yicheng Zhang, Lev Vidmar, Marcos Rigol
- Abstract summary: We study the emergent eigenstate that describes the quantum dynamics of hard-core bosons in one dimension (1D)
Specifically, we study the emergent eigenstate that describes the quantum dynamics of hard-core bosons in one dimension (1D)
- Score: 5.122644673465354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalized thermalization is a process that occurs in integrable systems in
which unitary dynamics, e.g., following a quantum quench, results in states in
which observables after equilibration are described by generalized Gibbs
ensembles (GGEs). Here we discuss an emergent eigenstate construction that
allows one to built emergent local Hamiltonians of which one eigenstate
captures the entire generalized thermalization process following a global
quantum quench. Specifically, we study the emergent eigenstate that describes
the quantum dynamics of hard-core bosons in one dimension (1D) for which the
initial state is a density wave and they evolve under a homogeneous
Hamiltonian.
Related papers
- Deep thermalization in continuous-variable quantum systems [2.979579757819132]
We study the ensemble of pure states supported on a small subsystem of a few modes.
We find that the induced ensemble attains a universal form, independent of the choice of measurement basis.
arXiv Detail & Related papers (2024-05-09T00:01:23Z) - Open-system eigenstate thermalization in a noninteracting integrable model [0.0]
We study the problem of thermalization of observables in isolated quantum setups by individual eigenstates.
Our findings suggest that nonintegrability is not the sole driver of thermalization.
arXiv Detail & Related papers (2024-04-17T13:16:42Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Thermal equilibrium in Gaussian dynamical semigroups [77.34726150561087]
We characterize all Gaussian dynamical semigroups in continuous variables quantum systems of n-bosonic modes which have a thermal Gibbs state as a stationary solution.
We also show that Alicki's quantum detailed-balance condition, based on a Gelfand-Naimark-Segal inner product, allows the determination of the temperature dependence of the diffusion and dissipation matrices.
arXiv Detail & Related papers (2022-07-11T19:32:17Z) - Dynamical purification and the emergence of quantum state designs from
the projected ensemble [0.0]
Quantum thermalization in a many-body system is defined by the approach of local subsystems towards a universal form.
Projected ensemble can mimic the behavior of a maximally entropic, uniformly random ensemble.
We show that absence of dynamical purification in the space-time dual dynamics yields exact state-designs for all moments $k$ at the same time.
arXiv Detail & Related papers (2022-04-28T17:19:32Z) - Maximum entropy quantum state distributions [58.720142291102135]
We go beyond traditional thermodynamics and condition on the full distribution of the conserved quantities.
The result are quantum state distributions whose deviations from thermal states' get more pronounced in the limit of wide input distributions.
arXiv Detail & Related papers (2022-03-23T17:42:34Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Linear growth of the entanglement entropy for quadratic Hamiltonians and
arbitrary initial states [11.04121146441257]
We prove that the entanglement entropy of any pure initial state of a bosonic quantum system grows linearly in time.
We discuss several applications of our results to physical systems with (weakly) interacting Hamiltonians and periodically driven quantum systems.
arXiv Detail & Related papers (2021-07-23T07:55:38Z) - Breakdown of quantum-classical correspondence and dynamical generation
of entanglement [6.167267225728292]
We study the generation of quantum entanglement induced by an ideal Fermi gas confined in a chaotic cavity.
We find that the breakdown of the quantum-classical correspondence of particle motion, via dramatically changing the spatial structure of many-body wavefunction, leads to profound changes of the entanglement structure.
arXiv Detail & Related papers (2021-04-14T03:09:24Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.