論文の概要: Explainable AI by BAPC -- Before and After correction Parameter
Comparison
- arxiv url: http://arxiv.org/abs/2103.07155v2
- Date: Mon, 11 Sep 2023 15:49:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 23:59:13.702101
- Title: Explainable AI by BAPC -- Before and After correction Parameter
Comparison
- Title(参考訳): BAPCによる説明可能なAI -- 修正パラメータの前後比較
- Authors: Florian Sobieczky, Manuela Gei{\ss}
- Abstract要約: より単純な'ベース'モデルを補正するAIモデルのための局所的なサロゲートは、AI予測の説明を得るための分析方法を表す。
AIモデルは線形モデルの残差誤差を近似し、その説明は解釈可能な基底モデルのパラメータの変化の観点から定式化される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A local surrogate for an AI-model correcting a simpler 'base' model is
introduced representing an analytical method to yield explanations of
AI-predictions. The approach is studied here in the context of the base model
being linear regression. The AI-model approximates the residual error of the
linear model and the explanations are formulated in terms of the change of the
interpretable base model's parameters. Criteria are formulated for the precise
relation between lost accuracy of the surrogate, the accuracy of the AI-model,
and the surrogate fidelity. It is shown that, assuming a certain maximal amount
of noise in the observed data, these criteria induce neighborhoods of the
instances to be explained which have an ideal size in terms of maximal accuracy
and fidelity.
- Abstract(参考訳): より単純な'ベース'モデルを補正するAIモデルのための局所的なサロゲートは、AI予測の説明を得るための分析方法を表す。
このアプローチは、ベースモデルの線形回帰という文脈で研究されている。
AIモデルは線形モデルの残差誤差を近似し、その説明は解釈可能な基底モデルのパラメータの変化の観点から定式化される。
基準は、サロゲートの損失精度、AIモデルの精度、サロゲートの忠実度の間の正確な関係を定式化する。
これらの基準は,観測データ中の特定の最大ノイズ量を仮定して,最大精度と忠実度の観点から理想的な大きさのインスタンスの近傍を誘導することを示した。
関連論文リスト
- Conditional Korhunen-Lo\'{e}ve regression model with Basis Adaptation
for high-dimensional problems: uncertainty quantification and inverse
modeling [62.997667081978825]
本稿では,物理系の観測可能な応答のサロゲートモデルの精度を向上させる手法を提案する。
本研究では,定常水理応答のBasis Adaptation (BA)法による代理モデル構築に提案手法を適用した。
論文 参考訳(メタデータ) (2023-07-05T18:14:38Z) - What and How does In-Context Learning Learn? Bayesian Model Averaging,
Parameterization, and Generalization [111.55277952086155]
In-Context Learning (ICL) をいくつかのオープンな質問に答えることによって研究する。
ニューラルネットワークパラメータを更新せずに、ICLはベイズモデル平均化アルゴリズムを暗黙的に実装している。
事前学習されたモデルの誤差は近似誤差と一般化誤差の和で有界であることを示す。
論文 参考訳(メタデータ) (2023-05-30T21:23:47Z) - Faithful Heteroscedastic Regression with Neural Networks [2.2835610890984164]
パラメータマップにニューラルネットワークを使用するパラメトリックメソッドは、データ内の複雑な関係をキャプチャすることができる。
ヘテロスセダティックなモデルを生成するために最適化に2つの簡単な修正を加え、ホモスセダティックなモデルとほぼ同等の精度で推定する。
提案手法は,等しくフレキシブルな平均値のみのモデルの精度を維持しつつ,クラスごとの分散キャリブレーションも提供する。
論文 参考訳(メタデータ) (2022-12-18T22:34:42Z) - Prediction Errors for Penalized Regressions based on Generalized
Approximate Message Passing [0.0]
C_p$ criterion, Information criteria, and leave-one-out Cross Validation (LOOCV) error。
GAMPの枠組みでは,推定値の分散を利用して情報基準を表現できることが示されている。
論文 参考訳(メタデータ) (2022-06-26T09:42:39Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Performance of Bayesian linear regression in a model with mismatch [8.60118148262922]
本研究では,ガウス先行の対数対数対のベイズ分布の平均値から得られる推定器の性能を解析した。
この推論モデルは、スピングラスにおけるガードナーモデルのバージョンとして記述することができる。
論文 参考訳(メタデータ) (2021-07-14T18:50:13Z) - Evaluating State-of-the-Art Classification Models Against Bayes
Optimality [106.50867011164584]
正規化フローを用いて学習した生成モデルのベイズ誤差を正確に計算できることを示す。
われわれの手法を用いて、最先端の分類モデルについて徹底的な調査を行う。
論文 参考訳(メタデータ) (2021-06-07T06:21:20Z) - A bandit-learning approach to multifidelity approximation [7.960229223744695]
マルチファイデリティ近似は、科学計算とシミュレーションにおいて重要な技術である。
異なる忠実度のデータを利用して正確な推定を行うためのバンディットラーニング手法を紹介します。
論文 参考訳(メタデータ) (2021-03-29T05:29:35Z) - Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks:
Theory, Methods, and Algorithms [2.266704469122763]
本稿では,事前知識がトレーニングデータとして利用可能である逆問題に対して,ベイズ推定を行う新しい手法を提案する。
容易に検証可能な条件下で,関連する後方モーメントの存在と適切性を確立する。
モデル精度解析により、データ駆動モデルによって報告されるベイズ確率は、頻繁な定義の下で著しく正確であることが示された。
論文 参考訳(メタデータ) (2021-03-18T11:34:08Z) - To what extent do human explanations of model behavior align with actual
model behavior? [91.67905128825402]
モデル推論決定の人間による説明が、モデルが実際にこれらの決定を下す方法と一致する程度を調べた。
自然言語の人間の説明が入力語に対するモデル感度とどのように一致するかを定量化する2つのアライメント指標を定義した。
モデルと人間の説明との整合は、NLI上のモデルの精度によって予測されないことが判明した。
論文 参考訳(メタデータ) (2020-12-24T17:40:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。