Enhanced coherence of all-nitride superconducting qubits epitaxially
grown on silicon substrate
- URL: http://arxiv.org/abs/2103.07711v3
- Date: Tue, 12 Oct 2021 01:32:02 GMT
- Title: Enhanced coherence of all-nitride superconducting qubits epitaxially
grown on silicon substrate
- Authors: Sunmi Kim, Hirotaka Terai, Taro Yamashita, Wei Qiu, Tomoko Fuse,
Fumiki Yoshihara, Sahel Ashhab, Kunihiro Inomata, and Kouichi Semba
- Abstract summary: We develop superconducting qubits based on NbN/AlN/NbN epitaxial Josephson junctions on silicon substrates.
The all-nitride qubits have great advantages such as chemical stability against oxidation.
- Score: 2.3180219011095327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Improving the coherence of superconducting qubits is a fundamental step
towards the realization of fault-tolerant quantum computation. However,
coherence times of quantum circuits made from conventional aluminium-based
Josephson junctions are limited by the presence of microscopic two-level
systems in the amorphous aluminum oxide tunnel barriers. Here, we have
developed superconducting qubits based on NbN/AlN/NbN epitaxial Josephson
junctions on silicon substrates which promise to overcome the drawbacks of
qubits based on Al/AlO$_{x}$/Al junctions. The all-nitride qubits have great
advantages such as chemical stability against oxidation, resulting in fewer
two-level fluctuators, feasibility for epitaxial tunnel barriers that reduce
energy relaxation and dephasing, and a larger superconducting gap of $\sim$5.2
meV for NbN, compared to $\sim$0.3 meV for aluminium, which suppresses the
excitation of quasiparticles. By replacing conventional MgO by a silicon
substrate with a TiN buffer layer for epitaxial growth of nitride junctions, we
demonstrate a qubit energy relaxation time $T$$_{1}$=16.3 $\mu$s and a
spin-echo dephasing time $T$$_{2}$=21.5 $\mu$s. These significant improvements
in quantum coherence are explained by the reduced dielectric loss compared to
previously reported NbN-based qubits with MgO substrates
($T$$_{1}$$\approx$$T$$_{2}$$\approx$0.5 $\mu$s). These results are an
important step towards constructing a new platform for superconducting quantum
hardware.
Related papers
- Single photon emitters in monolayer semiconductors coupled to transition metal dichalcogenide nanoantennas on silica and gold substrates [49.87501877273686]
Transition metal dichalcogenide (TMD) single photon emitters offer numerous advantages to quantum information applications.
Traditional materials used for the fabrication of nanoresonators, such as silicon or gallium phosphide (GaP), often require a high refractive index substrate.
Here, we use nanoantennas (NAs) fabricated from multilayer TMDs, which allow complete flexibility with the choice of substrate.
arXiv Detail & Related papers (2024-08-02T07:44:29Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Improved Coherence in Optically-Defined Niobium Trilayer Junction Qubits [45.786749852292246]
Niobium offers the benefit of increased operating temperatures and frequencies for superconducting devices.
We revisit niobium trilayer junctions and fabricate all-niobium transmons using only optical lithography.
We characterize devices in the microwave domain, measuring coherence times up to $62mu$s and an average qubit quality factor above $105$.
arXiv Detail & Related papers (2023-06-09T13:26:13Z) - Silicide-based Josephson field effect transistors for superconducting
qubits [0.0]
An alternative "gatemon" qubit has recently appeared, which uses hybrid superconducting/semiconducting (S/Sm) devices as gate-tuned Josephson junctions.
A scalable gatemon design could be made with CMOS Josephson Field-Effect Transistors as tunable weak link.
A successful gate modulation of Andreev current in a silicon-based transistor represents a step towards fully CMOS-integrated superconducting quantum computers.
arXiv Detail & Related papers (2022-09-06T18:00:03Z) - Miniaturizing transmon qubits using van der Waals materials [2.86962140979607]
Quantum computers can potentially achieve an exponential speedup versus classical computers on certain computational tasks.
These qubits have large footprints due to their large capacitor electrodes needed to suppress losses.
Here, we take advantage of the unique properties of the van der Waals (vdW) materials to reduce the qubit area.
arXiv Detail & Related papers (2021-09-07T02:31:07Z) - Hexagonal Boron Nitride (hBN) as a Low-loss Dielectric for
Superconducting Quantum Circuits and Qubits [40.57432059394399]
Dielectrics with low loss at microwave frequencies are imperative for high-coherence solid-state quantum computing platforms.
We study the dielectric loss of hexagonal boron nitride (hBN) thin films in the microwave regime.
We integrate hBN PPCs with aluminum Josephson junctions to realize transmon qubits with coherence times reaching 25 $mu$s.
arXiv Detail & Related papers (2021-08-31T18:00:06Z) - TOF-SIMS Analysis of Decoherence Sources in Nb Superconducting
Resonators [48.7576911714538]
Superconducting qubits have emerged as a potentially foundational platform technology.
Material quality and interfacial structures continue to curb device performance.
Two-level system defects in the thin film and adjacent regions introduce noise and dissipate electromagnetic energy.
arXiv Detail & Related papers (2021-08-30T22:22:47Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Flopping-mode electric dipole spin resonance in phosphorus donor qubits
in silicon [0.0]
Single spin qubits based on phosphorus donors in silicon are a promising candidate for a large-scale quantum computer.
We present a proposal for a flopping-mode electric dipole spin resonance qubit based on the combined electron and nuclear spin states of a double phosphorus donor quantum dot.
arXiv Detail & Related papers (2021-05-06T18:11:00Z) - Dynamic modulation of phonon-assisted transitions in quantum defects in
monolayer transition-metal dichalcogenide semiconductors [0.0]
We study the effect of spin-orbit coupling on the electron-phonon interaction in a single chalcogen vacancy defect.
We find that spin-orbit tune the magnitude of the electron-phonon coupling in both optical and charge-state transitions of the defect.
arXiv Detail & Related papers (2020-07-28T18:00:00Z) - Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device [48.7576911714538]
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%.
For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second.
Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $31$P donors implanted in silicon.
arXiv Detail & Related papers (2020-06-08T11:25:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.