論文の概要: Evaluation of soccer team defense based on prediction models of ball
recovery and being attacked
- arxiv url: http://arxiv.org/abs/2103.09627v2
- Date: Fri, 19 Mar 2021 00:42:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-22 11:07:34.340770
- Title: Evaluation of soccer team defense based on prediction models of ball
recovery and being attacked
- Title(参考訳): ボールの回収・攻撃予測モデルに基づくサッカーチームディフェンスの評価
- Authors: Kosuke Toda, Masakiyo Teranishi, Keisuke Kushiro, Keisuke Fujii
- Abstract要約: 本研究では,ボールの回復と攻撃の予測に基づいて,チーム防御を評価する手法を提案する。
45試合のデータを用いて,提案する指標とチームパフォーマンスの関係を検討した。
- 参考スコア(独自算出の注目度): 0.8921166277011345
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the development of measurement technology, data on the movements of
actual games in various sports are available and are expected to be used for
planning and evaluating the tactics and strategy. In particular, defense in
team sports is generally difficult to be evaluated because of the lack of
statistical data. Conventional evaluation methods based on predictions of
scores are considered unreliable and predict rare events throughout the entire
game, and it is difficult to evaluate various plays leading up to a score. On
the other hand, evaluation methods based on certain plays that lead to scoring
and dominant regions are sometimes unsuitable to evaluate the performance
(e.g., goals scored) of players and teams. In this study, we propose a method
to evaluate team defense from a comprehensive perspective related to team
performance based on the prediction of ball recovery and being attacked, which
occur more frequently than goals, using player actions and positional data of
all players and the ball. Using data from 45 soccer matches, we examined the
relationship between the proposed index and team performance in actual matches
and throughout a season. Results show that the proposed classifiers more
accurately predicted the true events than the existing classifiers which were
based on rare events (i.e., goals). Also, the proposed index had a moderate
correlation with the long-term outcomes of the season. These results suggest
that the proposed index might be a more reliable indicator rather than winning
or losing with the inclusion of accidental factors.
- Abstract(参考訳): 計測技術の発展に伴い,各種スポーツにおける実技の動きに関するデータが利用可能となり,戦術・戦略の計画・評価に使用されることが期待される。
特に、チームスポーツにおける防御は、統計データが不足しているため、一般に評価が難しい。
スコアの予測に基づく従来の評価方法は信頼性が低く、ゲーム全体を通して稀な事象を予測しており、スコアに至る様々なプレーを評価することは困難である。
一方で、得点や支配的な地域につながる特定のプレーに基づく評価手法は、プレイヤーやチームのパフォーマンス(例えば得点)を評価するのに不適格な場合もある。
本研究では,すべての選手とボールの位置データを用いて,ゴールよりも頻繁に発生する球の回復と攻撃の予測に基づいて,チームパフォーマンスに関する包括的視点からチーム防御を評価する手法を提案する。
サッカー45試合のデータを用いて,実試合およびシーズンを通して,提案する指標とチームパフォーマンスの関係について検討した。
その結果、提案する分類器は、希少な事象(すなわち目標)に基づく既存の分類器よりも正確な真の事象を予測できることがわかった。
また,提案指標は季節の長期成績と適度な相関を示した。
これらの結果から,提案指標は偶発的要因を伴って勝敗よりも信頼性の高い指標である可能性が示唆された。
関連論文リスト
- Bayes-xG: Player and Position Correction on Expected Goals (xG) using
Bayesian Hierarchical Approach [55.2480439325792]
本研究は, 期待目標(xG)測定値を用いて, 目標となるショットの予測における選手や位置要因の影響について検討した。
StatsBombの公開データを使って、イングランドのプレミアリーグから1万発のショットを分析している。
この研究は、スペインのラ・リガとドイツのブンデスリーガのデータに分析を拡張し、同等の結果を得た。
論文 参考訳(メタデータ) (2023-11-22T21:54:02Z) - CenTime: Event-Conditional Modelling of Censoring in Survival Analysis [49.44664144472712]
CenTimeは、イベントへの時間を直接見積もる、サバイバル分析の新しいアプローチである。
本手法は,非検閲データが少ない場合でも,堅牢なイベント条件検閲機構を特徴とする。
以上の結果から,CenTimeは同等の性能を維持しつつ,死までの時間を予測する上で,最先端のパフォーマンスを提供することがわかった。
論文 参考訳(メタデータ) (2023-09-07T17:07:33Z) - Transformer-Based Neural Marked Spatio Temporal Point Process Model for
Football Match Events Analysis [0.6946929968559495]
本稿では,ニューラル・テンポラル・ポイント・プロセス・フレームワークに基づくフットボール・イベント・データのモデルを提案する。
検証のために,サッカーチームの最終ランキング,平均ゴールスコア,シーズン平均xGとの関係を検討した。
平均HPUSはゴールやショットの詳細を使わずとも有意な相関を示した。
論文 参考訳(メタデータ) (2023-02-18T10:02:45Z) - Betting the system: Using lineups to predict football scores [0.0]
本稿では,決勝点におけるラインアップの役割を分析し,サッカーにおけるランダム性を低減することを目的とする。
サッカークラブはラインナップに数百万ドルを投資し、個々の統計がより良い結果にどのように変換するかを知ることで投資を最適化することができる。
スポーツの賭けは指数関数的に増加しており、将来を予測することは利益があり、望ましい。
論文 参考訳(メタデータ) (2022-10-12T15:47:42Z) - A Tale of HodgeRank and Spectral Method: Target Attack Against Rank
Aggregation Is the Fixed Point of Adversarial Game [153.74942025516853]
ランクアグリゲーション手法の本質的な脆弱性は文献ではよく研究されていない。
本稿では,ペアデータの変更による集計結果の指定を希望する目的のある敵に焦点をあてる。
提案した標的攻撃戦略の有効性は,一連の玩具シミュレーションと実世界のデータ実験によって実証された。
論文 参考訳(メタデータ) (2022-09-13T05:59:02Z) - Explainable expected goal models for performance analysis in football
analytics [5.802346990263708]
本報告では,2014-15年と2020-21年の7シーズンから315,430発のショットをトレーニングした,欧州サッカーリーグのトップ5のゴールモデルを提案する。
我々の知る限りでは、この論文は、プロファイルを集約した説明可能な人工知能ツールの実用的な応用を実証した最初の論文である。
論文 参考訳(メタデータ) (2022-06-14T23:56:03Z) - Evaluation of creating scoring opportunities for teammates in soccer via
trajectory prediction [7.688133652295848]
実際の動作と軌道予測による参照動作を比較することで,オフボールスコアリングの機会を創出する選手を評価する。
検証のために,プロサッカーリーグのチーム全試合の年間給与,ゴール,評価との関係を検討した。
提案手法は,ボールのない選手がチームメイトに得点率を与えるための指標として有効であることが示唆された。
論文 参考訳(メタデータ) (2022-06-04T03:58:37Z) - Collusion Detection in Team-Based Multiplayer Games [57.153233321515984]
チームベースのマルチプレイヤーゲームにおいて,協調動作を検出するシステムを提案する。
提案手法は,ゲーム内行動パターンと組み合わせたプレイヤーの社会的関係を解析する。
次に,非教師なし学習手法であるアイソレーションフォレストによる検出を自動化する。
論文 参考訳(メタデータ) (2022-03-10T02:37:39Z) - Evaluating Team Skill Aggregation in Online Competitive Games [4.168733556014873]
本稿では,2つの新しい集計手法が評価システムの予測性能に与える影響について分析する。
以上の結果から,テストケースの大部分において,MAX法が他の2手法よりも優れていることが示された。
本研究の結果は,チームのパフォーマンスを計算するために,より精巧な手法を考案する必要性を浮き彫りにした。
論文 参考訳(メタデータ) (2021-06-21T20:17:36Z) - Interpretable Real-Time Win Prediction for Honor of Kings, a Popular
Mobile MOBA Esport [51.20042288437171]
本研究では,2段階空間時間ネットワーク(TSSTN)を提案する。
実世界のライブストリーミングシナリオにおける実験結果と応用により,提案したTSSTNモデルは予測精度と解釈可能性の両方において有効であることが示された。
論文 参考訳(メタデータ) (2020-08-14T12:00:58Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。