論文の概要: Imagine All the People: Citizen Science, Artificial Intelligence, and
Computational Research
- arxiv url: http://arxiv.org/abs/2104.00093v1
- Date: Wed, 31 Mar 2021 20:21:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-03 09:05:23.800675
- Title: Imagine All the People: Citizen Science, Artificial Intelligence, and
Computational Research
- Title(参考訳): 市民科学、人工知能、計算研究
- Authors: Lea A. Shanley, Lucy Fortson, Tanya Berger-Wolf, Kevin Crowston, and
Pietro Michelucci
- Abstract要約: 機械学習、人工知能、ディープラーニングは過去10年間で大幅に進歩している。
人間は創造性、直観、文脈、抽象といったユニークな能力を持っている。
科学と社会の課題に挑戦するためには、人間と機械の相補的な能力が必要です。
- 参考スコア(独自算出の注目度): 7.111661677477925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning, artificial intelligence, and deep learning have advanced
significantly over the past decade. Nonetheless, humans possess unique
abilities such as creativity, intuition, context and abstraction, analytic
problem solving, and detecting unusual events. To successfully tackle pressing
scientific and societal challenges, we need the complementary capabilities of
both humans and machines. The Federal Government could accelerate its
priorities on multiple fronts through judicious integration of citizen science
and crowdsourcing with artificial intelligence (AI), Internet of Things (IoT),
and cloud strategies.
- Abstract(参考訳): 機械学習、人工知能、ディープラーニングは過去10年間で大幅に進歩している。
それでも、人間は創造性、直観、文脈と抽象、分析的問題解決、異常事象の検出といったユニークな能力を持っている。
科学と社会の課題に挑戦するためには、人間と機械の相補的な能力が必要です。
連邦政府は、市民科学の司法的統合と、人工知能(AI)、IoT(Internet of Things)、クラウド戦略によるクラウドソーシングによって、複数の面での優先事項を加速することができる。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
数学は人間によって開発された最も強力な概念体系の1つである。
AIの急速な進歩、特に大規模言語モデル(LLM)の進歩による推進により、そのようなシステム構築に対する新たな、広範な関心が生まれている。
論文 参考訳(メタデータ) (2023-10-19T02:00:31Z) - Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems [268.585904751315]
科学のためのAI(AI4Science)として知られる新しい研究領域
領域は、物理世界(波動関数と電子密度)、原子(分子、タンパク質、物質、相互作用)、マクロ(流体、気候、地下)まで理解することを目的としている。
主要な課題は、物理第一原理、特に対称性を深層学習法によって自然システムで捉える方法である。
論文 参考訳(メタデータ) (2023-07-17T12:14:14Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - When Brain-inspired AI Meets AGI [40.96159978312796]
我々は、人工知能の観点から、脳にインスパイアされたAIの包括的概要を提供する。
私たちは、脳にインスパイアされたAIの現在の進歩と、AGIとの広範な関係から始まります。
次に、人間の知性とAIの両面での重要な特徴について述べる。
論文 参考訳(メタデータ) (2023-03-28T12:46:38Z) - The Embeddings World and Artificial General Intelligence [2.28438857884398]
我々は、このインテリジェントな世界を構築する上で、事前訓練された埋め込みが重要な役割を担っていると論じている。
我々は、事前学習した埋め込みが、人間レベルの知能のいくつかの特性を達成するのにどのように役立つかについて論じる。
論文 参考訳(メタデータ) (2022-09-14T11:56:30Z) - Conscious AI [6.061244362532694]
人工知能の最近の進歩は、分類タスクの人間規模のスピードと精度を達成しました。
現在のシステムは、パターンを認識して分類する必要はない。
AIが直感や共感を必要とするより複雑なタスクに進むためには、メタシンキング、創造性、共感などの能力が人間の自己認識や意識に似ています。
論文 参考訳(メタデータ) (2021-05-12T15:53:44Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z) - To Root Artificial Intelligence Deeply in Basic Science for a New
Generation of AI [1.0152838128195467]
人工知能の野望の1つは、人工知能を基礎科学に深く根ざすことである。
本稿では,今後20年間の人工知能研究の課題について述べる。
論文 参考訳(メタデータ) (2020-09-11T22:38:38Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
我々は、複数の人間の知性と学習スタイルの様々な側面を説明し、様々なAI問題領域に影響を及ぼす可能性がある。
未来のAIシステムは、人間のユーザと互いにコミュニケーションするだけでなく、知識と知恵を効率的に交換できる。
論文 参考訳(メタデータ) (2020-08-07T21:00:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。