論文の概要: Improving PINNs By Algebraic Inclusion of Boundary and Initial Conditions
- arxiv url: http://arxiv.org/abs/2407.20741v1
- Date: Tue, 30 Jul 2024 11:19:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 17:30:03.423033
- Title: Improving PINNs By Algebraic Inclusion of Boundary and Initial Conditions
- Title(参考訳): 境界条件と初期条件の代数的包摂によるPINNの改善
- Authors: Mohan Ren, Zhihao Fang, Keren Li, Anirbit Mukherjee,
- Abstract要約: AI for Science」は、AI技術を用いた基本的な科学的問題を解決することを目的としている。
本研究では、トレーニング対象のモデルを単にニューラルネットワークから非線形変換に変更する可能性について検討する。
これにより、損失関数の項数は標準のPINN損失よりも減少する。
- 参考スコア(独自算出の注目度): 0.1874930567916036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: "AI for Science" aims to solve fundamental scientific problems using AI techniques. As most physical phenomena can be described as Partial Differential Equations (PDEs) , approximating their solutions using neural networks has evolved as a central component of scientific-ML. Physics-Informed Neural Networks (PINNs) is the general method that has evolved for this task but its training is well-known to be very unstable. In this work we explore the possibility of changing the model being trained from being just a neural network to being a non-linear transformation of it - one that algebraically includes the boundary/initial conditions. This reduces the number of terms in the loss function than the standard PINN losses. We demonstrate that our modification leads to significant performance gains across a range of benchmark tasks, in various dimensions and without having to tweak the training algorithm. Our conclusions are based on conducting hundreds of experiments, in the fully unsupervised setting, over multiple linear and non-linear PDEs set to exactly solvable scenarios, which lends to a concrete measurement of our performance gains in terms of order(s) of magnitude lower fractional errors being achieved, than by standard PINNs. The code accompanying this manuscript is publicly available at, https://github.com/MorganREN/Improving-PINNs-By-Algebraic-Inclusion-of-Boundary-and-Initial-Conditio ns
- Abstract(参考訳): AI for Science」は、AI技術を用いた基本的な科学的問題を解決することを目的としている。
多くの物理現象は部分微分方程式 (Partial Differential Equations, PDE) と記述できるため、ニューラルネットワークによる解の近似は科学MLの中心的な構成要素として進化してきた。
物理インフォームドニューラルネットワーク(PINN)は、このタスクのために進化した一般的な手法であるが、そのトレーニングは非常に不安定であることが知られている。
本研究では、トレーニング対象のモデルをニューラルネットワークから非線形変換に変更する可能性について検討する。
これにより、損失関数の項数は標準のPINN損失よりも減少する。
我々は、トレーニングアルゴリズムを微調整することなく、様々なベンチマークタスク、様々な次元において、我々の修正が大きなパフォーマンス向上をもたらすことを実証した。
我々の結論は、完全に教師されていない環境で数百の実験を行い、複数の線形および非線形PDEを正確に解決可能なシナリオに設定し、標準のPINNよりもはるかに低い分数誤差のオーダー(s)でパフォーマンスの利得を具体的に測定することに基づいている。
この原稿に付随するコードは、https://github.com/MorganREN/Improving-PINNs-By-Algebraic-Inclusion-of-Boundary-and-Initial-Conditio nsで公開されている。
関連論文リスト
- Characteristic Performance Study on Solving Oscillator ODEs via Soft-constrained Physics-informed Neural Network with Small Data [6.3295494018089435]
本稿では,物理インフォームドニューラルネットワーク(PINN),従来のニューラルネットワーク(NN),および微分方程式(DE)に関する従来の数値離散化法を比較した。
我々は,ソフト制約のPINNアプローチに注目し,その数学的枠組みと計算フローを正規Dsと部分Dsの解法として定式化した。
我々は、PINNのDeepXDEベースの実装が、トレーニングにおいて軽量コードであり、効率的なだけでなく、CPU/GPUプラットフォーム間で柔軟なことを実証した。
論文 参考訳(メタデータ) (2024-08-19T13:02:06Z) - Learning Only On Boundaries: a Physics-Informed Neural operator for
Solving Parametric Partial Differential Equations in Complex Geometries [10.250994619846416]
ラベル付きデータなしでパラメータ化境界値問題を解決する物理インフォームド・ニューラル演算子法を提案する。
数値実験により,パラメータ化複素測地と非有界問題の有効性が示された。
論文 参考訳(メタデータ) (2023-08-24T17:29:57Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
物理インフォームドニューラルネットワーク(PINN)は境界値問題を解決するための新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する際には、一階微分を使い、強い形式と弱い形式の方程式を組み合わせることにより、はるかに精度が向上することが示されている。
本研究では,多物理問題,特に定常熱力学的に結合した方程式系を解くために混合定式化を適用することを提案する。
論文 参考訳(メタデータ) (2023-02-09T21:56:59Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Learning to Solve PDE-constrained Inverse Problems with Graph Networks [51.89325993156204]
科学と工学にまたがる多くの応用分野において、偏微分方程式(PDE)によって定義される制約で逆問題を解決することに興味がある。
ここでは、これらのPDE制約された逆問題を解決するために、GNNを探索する。
GNNを用いて計算速度を最大90倍に向上させる。
論文 参考訳(メタデータ) (2022-06-01T18:48:01Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - When and why PINNs fail to train: A neural tangent kernel perspective [2.1485350418225244]
PINNのニューラルタンジェントカーネル(NTK)を導出し、適切な条件下では、無限幅極限でのトレーニング中に一定となる決定論的カーネルに収束することを示す。
学習誤差の総和に寄与する損失成分の収束率に顕著な差があることが判明した。
本研究では,NTKの固有値を用いて学習誤差の収束率を適応的に調整する勾配降下アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-28T23:44:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。