論文の概要: Accurate and fast matrix factorization for low-rank learning
- arxiv url: http://arxiv.org/abs/2104.10785v1
- Date: Wed, 21 Apr 2021 22:35:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-23 14:07:42.718196
- Title: Accurate and fast matrix factorization for low-rank learning
- Title(参考訳): 低ランク学習のための高精度・高速行列分解
- Authors: Reza Godaz, Reza Monsefi, Faezeh Toutounian, Reshad Hosseini
- Abstract要約: 高精度な部分特異値分解(SVD)と巨大な行列の数値ランク推定に関する2つの重要な課題に取り組みます。
我々は、これらの目標を達成するために、Golub-Kahanの対角化プロセスやRitzベクトルなどのクリロフ部分空間の概念を使用します。
- 参考スコア(独自算出の注目度): 4.435094091999926
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we tackle two important challenges related to the accurate
partial singular value decomposition (SVD) and numerical rank estimation of a
huge matrix to use in low-rank learning problems in a fast way. We use the
concepts of Krylov subspaces such as the Golub-Kahan bidiagonalization process
as well as Ritz vectors to achieve these goals. Our experiments identify
various advantages of the proposed methods compared to traditional and
randomized SVD (R-SVD) methods with respect to the accuracy of the singular
values and corresponding singular vectors computed in a similar execution time.
The proposed methods are appropriate for applications involving huge matrices
where accuracy in all spectrum of the desired singular values, and also all of
corresponding singular vectors is essential. We evaluate our method in the real
application of Riemannian similarity learning (RSL) between two various image
datasets of MNIST and USPS.
- Abstract(参考訳): 本稿では, 高精度な部分特異値分解(SVD)と, 低ランク学習問題で高速に使用する巨大行列の数値ランク推定に関する2つの重要な課題に取り組む。
我々はこれらの目標を達成するために、ゴルブ・カハン二角化過程のようなクリロフ部分空間の概念とリッツベクトルを用いる。
提案手法は,svd法(r-svd法)と比較して特異値の精度と類似した実行時間で計算した特異ベクトルの精度に比較して,様々な利点を見出した。
提案手法は、所望の特異値のすべてのスペクトルの精度と対応するすべての特異ベクトルが必須となる巨大な行列を含む応用に適している。
我々は,MNISTとUSPSの2つの画像データセット間のリーマン類似性学習(Riemannian similarity learning, RL)の実適用性を評価する。
関連論文リスト
- Optimal Estimation of Shared Singular Subspaces across Multiple Noisy Matrices [3.3373545585860596]
本研究は,低ランク行列デノジングフレームワークにおいて,複数の行列にまたがる共有(左)特異部分空間を推定することに焦点を当てる。
信号行列の真の特異部分空間が同一である場合、Stack-SVDは最小の最大速度最適化を実現する。
部分的共有の様々なケースにおいて、Stack-SVDが有効であり続ける条件を厳格に特徴付け、最小限の最適性を達成したり、一貫した見積もりを達成できなかったりする。
論文 参考訳(メタデータ) (2024-11-26T02:49:30Z) - Robust SVD Made Easy: A fast and reliable algorithm for large-scale data
analysis [0.0]
既存のロバストなSVDアルゴリズムは、ロバスト性のために速度を犠牲にしたり、わずかに外れ値が存在する場合に失敗することが多い。
本研究では,Spherally Normalized SVDというアルゴリズムを導入し,ロバストなSVD近似手法を提案する。
提案アルゴリズムは, 標準低ランクSVDアルゴリズムの2つの応用しか利用せず, 顕著な高速化を実現している。
論文 参考訳(メタデータ) (2024-02-15T07:08:11Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
クラスタ化マルチタスク圧縮センシングは、複数の圧縮センシングタスクを解決する階層モデルである。
このモデルに対する既存の推論アルゴリズムは計算コストが高く、高次元ではうまくスケールしない。
本稿では,これらの共分散行列を明示的に計算する必要をなくし,モデル推論を大幅に高速化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-30T15:57:14Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
共分散行列の明示的な構成を避ける新しい推論手法を提案する。
本手法では, 数値線形代数と共役勾配アルゴリズムの対角線推定結果とを結合する。
いくつかのシミュレーションにおいて,本手法は計算時間とメモリにおける既存手法よりも拡張性が高い。
論文 参考訳(メタデータ) (2022-02-25T16:35:26Z) - Learning Log-Determinant Divergences for Positive Definite Matrices [47.61701711840848]
本稿では,データ駆動方式で類似度を学習することを提案する。
スカラーアルファとベータによってパラメトリ化されたメタダイバージェンスであるalphabeta-log-detの発散を利用する。
私たちの重要なアイデアは、これらのパラメータを連続体にキャストし、データから学ぶことです。
論文 参考訳(メタデータ) (2021-04-13T19:09:43Z) - On the Efficient Implementation of the Matrix Exponentiated Gradient
Algorithm for Low-Rank Matrix Optimization [26.858608065417663]
スペクトル上の凸最適化は、機械学習、信号処理、統計学に重要な応用がある。
低ランク行列による最適化に適したMEGの効率的な実装を提案し、各イテレーションで単一の低ランクSVDのみを使用する。
また,本手法の正しい収束のための効率よく計算可能な証明書も提供する。
論文 参考訳(メタデータ) (2020-12-18T19:14:51Z) - Projection techniques to update the truncated SVD of evolving matrices [17.22107982549168]
本稿では,新しい行や列の追加に伴う行列のランク-k truncated Singular Value Decomposition (SVD) の更新の問題について考察する。
提案するフレームワークは純粋に代数的であり、一般的な更新問題をターゲットにしている。
実アプリケーションから得られた行列の結果から,提案アルゴリズムの精度が向上する可能性が示唆された。
論文 参考訳(メタデータ) (2020-10-13T13:46:08Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
スケッチに基づくL2正規化最小二乗問題の解法を提案する。
我々は、最も人気のあるランダム埋め込みの2つ、すなわちガウス埋め込みとサブサンプリングランダム化アダマール変換(SRHT)を考える。
論文 参考訳(メタデータ) (2020-06-10T15:00:09Z) - Error Estimation for Sketched SVD via the Bootstrap [60.67199274260768]
本稿では,スケッチ化された特異ベクトル/値の実際の誤差を数値的に推定する完全データ駆動型ブートストラップ法を開発した。
この方法は、スケッチされたオブジェクトのみで動作するため、計算コストが安い。
論文 参考訳(メタデータ) (2020-03-10T19:14:08Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。