論文の概要: Improved Surrogate Modeling of Fluid Dynamics with Physics-Informed
Neural Networks
- arxiv url: http://arxiv.org/abs/2105.01838v1
- Date: Wed, 5 May 2021 02:23:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-06 21:16:50.784231
- Title: Improved Surrogate Modeling of Fluid Dynamics with Physics-Informed
Neural Networks
- Title(参考訳): 物理インフォーメーションニューラルネットワークによる流体力学のサーロゲートモデリングの改善
- Authors: Jian Cheng Wong, Chinchun Ooi, Pao-Hsiung Chiu, My Ha Dao
- Abstract要約: PINNは最近、基本的な制御方程式を含む物理ベースのドメイン知識をニューラルネットワークモデルに組み込む方法として大きな約束を示しました。
本稿では,流体力学系のモデリングをサロゲートするモデリング手法について検討する。
物理に基づく正規化項を組み込むことで、等価なデータ駆動サロゲートモデルを大幅に改善できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-Informed Neural Networks (PINNs) have recently shown great promise as
a way of incorporating physics-based domain knowledge, including fundamental
governing equations, into neural network models for many complex engineering
systems. They have been particularly effective in the area of inverse problems,
where boundary conditions may be ill-defined, and data-absent scenarios, where
typical supervised learning approaches will fail. Here, we further explore the
use of this modeling methodology to surrogate modeling of a fluid dynamical
system, and demonstrate additional undiscussed and interesting advantages of
such a modeling methodology over conventional data-driven approaches: 1)
improving the model's predictive performance even with incomplete description
of the underlying physics; 2) improving the robustness of the model to noise in
the dataset; 3) reduced effort to convergence during optimization for a new,
previously unseen scenario by transfer optimization of a pre-existing model.
Hence, we noticed the inclusion of a physics-based regularization term can
substantially improve the equivalent data-driven surrogate model in many
substantive ways, including an order of magnitude improvement in test error
when the dataset is very noisy, and a 2-3x improvement when only partial
physics is included. In addition, we propose a novel transfer optimization
scheme for use in such surrogate modeling scenarios and demonstrate an
approximately 3x improvement in speed to convergence and an order of magnitude
improvement in predictive performance over conventional Xavier initialization
for training of new scenarios.
- Abstract(参考訳): 物理学に変形したニューラルネットワーク(pinns)は、多くの複雑なエンジニアリングシステムのために、基本的な制御方程式を含む物理ベースのドメイン知識をニューラルネットワークモデルに組み込む方法として大きな期待を示している。
境界条件が不定義になりうる逆問題や、典型的な教師付き学習アプローチが失敗するようなデータ欠如のシナリオにおいて、特に効果的である。
Here, we further explore the use of this modeling methodology to surrogate modeling of a fluid dynamical system, and demonstrate additional undiscussed and interesting advantages of such a modeling methodology over conventional data-driven approaches: 1) improving the model's predictive performance even with incomplete description of the underlying physics; 2) improving the robustness of the model to noise in the dataset; 3) reduced effort to convergence during optimization for a new, previously unseen scenario by transfer optimization of a pre-existing model.
したがって、物理に基づく正規化項を組み込むことで、データセットがノイズの多い場合のテスト誤差の桁違いの改善や、部分物理学のみを含む場合の2~3倍の改善など、多くの実体的な方法で同等のデータ駆動サロゲートモデルを大幅に改善できることがわかった。
さらに,このようなサロゲートモデルシナリオで使用する新しい転送最適化手法を提案するとともに,収束までの速度が約3倍向上し,新たなシナリオのトレーニングのための従来のxavier初期化よりも予測性能が桁違いに向上することを示す。
関連論文リスト
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
複素・非線形・雑音に隠れた潜在低次元構造を持つ高次元データセットをモデル化する課題に取り組む。
我々のアプローチは、非パラメトリック回帰、因子モデル、高次元回帰のためのニューラルネットワークの概念のシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2025-02-16T23:13:55Z) - Hybrid Adaptive Modeling using Neural Networks Trained with Nonlinear Dynamics Based Features [5.652228574188242]
本稿では,非線形動的モデリングから情報を明らかにし,それをデータベースモデルに組み込むことにより,標準手法から逸脱する新しいアプローチを提案する。
摂動法による非線形力学現象を明示的に取り入れることにより、予測能力はブルートフォース数値シミュレーションから得られた知識と比較してより現実的で洞察力が高い。
論文 参考訳(メタデータ) (2025-01-21T02:38:28Z) - An Efficient Occupancy World Model via Decoupled Dynamic Flow and Image-assisted Training [50.71892161377806]
DFIT-OccWorldは、分離されたダイナミックフローとイメージアシストトレーニング戦略を活用する、効率的な3D占有世界モデルである。
提案モデルでは, 静止ボクセルはポーズ変換により容易に得られるのに対し, 既存のボクセルフローを用いて既存の観測を歪曲することで, 将来のダイナミックボクセルを予測できる。
論文 参考訳(メタデータ) (2024-12-18T12:10:33Z) - Solving Inverse Problems with Model Mismatch using Untrained Neural Networks within Model-based Architectures [14.551812310439004]
モデルベースアーキテクチャでは,各インスタンスの計測領域におけるデータの一貫性を一致させるために,トレーニングされていないフォワードモデル残差ブロックを導入する。
提案手法は,パラメータ感受性が低く,追加データを必要としない統一解を提供し,前方モデルの同時適用と1パスの再構成を可能にする。
論文 参考訳(メタデータ) (2024-03-07T19:02:13Z) - Enhancing Dynamical System Modeling through Interpretable Machine
Learning Augmentations: A Case Study in Cathodic Electrophoretic Deposition [0.8796261172196743]
本稿では,物理システムのモデリング向上を目的とした包括的データ駆動フレームワークを提案する。
実証的応用として,電顕的電気泳動沈着(EPD)のモデル化を追求する。
論文 参考訳(メタデータ) (2024-01-16T14:58:21Z) - Physics Informed Piecewise Linear Neural Networks for Process
Optimization [0.0]
ニューラルネットワークモデルに埋め込まれた最適化問題に対して,物理情報を用いた線形ニューラルネットワークモデルの更新が提案されている。
すべてのケースにおいて、物理インフォームドトレーニングニューラルネットワークに基づく最適結果は、大域的最適性に近い。
論文 参考訳(メタデータ) (2023-02-02T10:14:54Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Multi-Objective Physics-Guided Recurrent Neural Networks for Identifying
Non-Autonomous Dynamical Systems [0.0]
制御対象の非自律系をモデル化するための物理誘導型ハイブリッド手法を提案する。
これはリカレントニューラルネットワークによって拡張され、洗練された多目的戦略を使用してトレーニングされる。
実データを用いた実験により,物理モデルと比較して精度が大幅に向上した。
論文 参考訳(メタデータ) (2022-04-27T14:33:02Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。