論文の概要: Towards Dynamic Feature Selection with Attention to Assist Banking
Customers in Establishing a New Business
- arxiv url: http://arxiv.org/abs/2105.03852v1
- Date: Sun, 9 May 2021 06:48:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-11 14:46:26.685492
- Title: Towards Dynamic Feature Selection with Attention to Assist Banking
Customers in Establishing a New Business
- Title(参考訳): 新事業設立におけるバンキング顧客支援に配慮した動的特徴選択
- Authors: Mohammad Amin Edrisi
- Abstract要約: 本稿では,銀行や非銀行のデータソースから重要な特徴を抽出し,識別するための新しい枠組みを提案する。
我々は,新しいビジネスの確立に関する顧客の問い合わせに最も寄与する重要かつ関連する機能を選択するために,注意に基づく教師付き特徴選択手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Establishing a new business may involve Knowledge acquisition in various
areas, from personal to business and marketing sources. This task is
challenging as it requires examining various data islands to uncover hidden
patterns and unknown correlations such as purchasing behavior, consumer buying
signals, and demographic and socioeconomic attributes of different locations.
This paper introduces a novel framework for extracting and identifying
important features from banking and non-banking data sources to address this
challenge. We present an attention-based supervised feature selection approach
to select important and relevant features which contribute most to the
customer's query regarding establishing a new business. We report on the
experiment conducted on an openly available dataset created from Kaggle and the
UCI machine learning repositories.
- Abstract(参考訳): 新しいビジネスを確立するには、個人からビジネス、マーケティングのソースまで、さまざまな分野の知識獲得が必要かもしれない。
この課題は、購入行動、消費者購買信号、異なる場所の人口統計学的、社会経済的属性といった隠れたパターンや未知の相関を明らかにするために、様々なデータ島を調べる必要があるため、難しい。
本稿では,銀行や非銀行のデータソースから重要な特徴を抽出し,特定するための新しい枠組みを提案する。
我々は,新しいビジネスの確立に関する顧客の問い合わせに最も寄与する重要かつ関連する機能を選択するために,注意に基づく教師付き特徴選択手法を提案する。
本稿では,Kaggle と UCI 機械学習レポジトリから作成したオープンソースデータセットについて報告する。
関連論文リスト
- Language Models Can Reduce Asymmetry in Information Markets [100.38786498942702]
我々は、言語モデルを利用した知的エージェントが外部参加者に代わって情報を売買する、オープンソースのシミュレートされたデジタルマーケットプレースを紹介した。
このマーケットプレースを実現する中心的なメカニズムはエージェントの二重機能であり、特権情報の品質を評価する能力を持つと同時に、忘れる能力も備えている。
適切に行動するためには、エージェントは合理的な判断をし、生成されたサブクエリを通じて市場を戦略的に探索し、購入した情報から回答を合成する必要がある。
論文 参考訳(メタデータ) (2024-03-21T14:48:37Z) - From Data to Decisions: The Transformational Power of Machine Learning
in Business Recommendations [0.0]
本研究は,機械学習(ML)がレコメンデーションシステム(RS)の進化と有効性に与える影響を探求することを目的とする。
この研究は、コンテンツがパーソナライズされ、好みの変化に動的に適応する、シームレスで直感的なオンライン体験に対するユーザの期待が高まることを明らかにする。
論文 参考訳(メタデータ) (2024-02-12T22:56:18Z) - CEntRE: A paragraph-level Chinese dataset for Relation Extraction among
Enterprises [11.596083874633]
企業関係抽出は、エンタープライズエンティティのペアを検出し、非構造化または半構造化されたテキストデータからそれらの間のビジネス関係を識別することを目的としている。
CEntREは、人間の注意深いアノテーションとインテリジェントなデータ処理を備えた、公開可能なビジネスニュースデータから構築された新しいデータセットである。
論文 参考訳(メタデータ) (2022-10-19T14:22:10Z) - Learning by Asking Questions for Knowledge-based Novel Object
Recognition [64.55573343404572]
実世界のオブジェクト認識には、認識すべきオブジェクトクラスが多数存在する。教師付き学習に基づく従来の画像認識は、トレーニングデータに存在するオブジェクトクラスのみを認識できるため、現実の世界においては限定的な適用性を有する。
そこで本研究では,モデルが新たなオブジェクトを瞬時に認識するのに役立つ質問生成を通じて,外部知識を取得するための枠組みについて検討する。
我々のパイプラインは、オブジェクトベースのオブジェクト認識と、新しい知識を得るために知識を意識した質問を生成する質問生成という2つのコンポーネントから構成される。
論文 参考訳(メタデータ) (2022-10-12T02:51:58Z) - Lessons from the AdKDD'21 Privacy-Preserving ML Challenge [57.365745458033075]
W3Cの顕著な提案では、過去のディスプレイの集計された、差別化されたプライベートなレポートを通じてのみ広告信号を共有することができる。
この提案を広く研究するために、AdKDD'21でオープンなプライバシ保護機械学習チャレンジが行われた。
重要な発見は、大量の集約されたデータの小さな集合が存在する場合の学習モデルは驚くほど効率的で安価であることである。
論文 参考訳(メタデータ) (2022-01-31T11:09:59Z) - A Survey of Data Marketplaces and Their Business Models [0.0]
「データ」は、土地、インフラ、労働、資本と同様に、必要不可欠な生産要素になりつつある。
特定の機能を自動化することから、データ駆動型組織における意思決定を促進することに至るまで、タスクは、ますますサードパーティからのデータインプットを取得することの恩恵を受けています。
新しいエンティティや新しいビジネスモデルは、そのようなデータ要求を適切なプロバイダと一致させることを目的として現れています。
論文 参考訳(メタデータ) (2022-01-11T12:27:37Z) - The Pursuit of Knowledge: Discovering and Localizing Novel Categories
using Dual Memory [85.01439251151203]
我々は,未ラベルの大規模データセットにおける新しいオブジェクトの発見と位置決定の課題であるオブジェクトカテゴリ発見に取り組む。
2つのメモリモジュールを用いて,オブジェクトカテゴリに関する事前知識を用いて新たなカテゴリを探索する手法を提案する。
検出器の性能をCOCOのミニバルデータセットで示し、そのインザワイルド機能を実証します。
論文 参考訳(メタデータ) (2021-05-04T17:55:59Z) - OSOUM Framework for Trading Data Research [79.0383470835073]
私たちは、私たちの知る限り、最初のオープンソースのシミュレーションプラットフォームであるOpen SOUrce Market Simulator(OSOUM)を提供して、トレーディング市場、特にデータ市場を分析します。
我々は、購入に利用可能なさまざまなデータセットを所有する売り手と、購入に有効な適切なデータセットを検索する買い手という2つのタイプのエージェントからなる、特定のデータ市場モデルを記述し、実装する。
データ市場を扱うための商用フレームワークはすでに存在していますが、購入者および販売者の両方が(データ)市場に参加することの可能な振る舞いをシミュレートするための、自由で広範なエンドツーエンドの研究ツールを提供しています。
論文 参考訳(メタデータ) (2021-02-18T09:20:26Z) - Towards Intelligent Risk-based Customer Segmentation in Banking [0.0]
我々は、顧客のデータをあるシステムから別のシステムへ移動させるために、一連の処理要素からなるインテリジェントなデータ駆動パイプラインを提案する。
目標は、機能エンジニアリング、すなわち、(銀行化)ドメイン知識を使用して生データから特徴を抽出するプロセスを自動化する、新しいインテリジェントな顧客セグメンテーションプロセスを提供することである。
提案手法は,従来の手法に比べて91%の精度でトランザクションの検出,識別,分類を行うことができる。
論文 参考訳(メタデータ) (2020-09-29T11:22:04Z) - Modeling Stakeholder-centric Value Chain of Data to Understand Data
Exchange Ecosystem [0.12891210250935145]
本稿では,データビジネスにおける利害関係者間の関係に着目し,利害関係者中心の価値連鎖(SVC)を記述するモデルを提案する。
SVCモデルは、データ交換エコシステムの構造的特性の分析と理解を可能にする。
論文 参考訳(メタデータ) (2020-05-22T05:04:08Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
本稿では,知識グラフ補完タスクにおけるユーザインタラクションデータを活用することで,新たな逆学習手法を提案する。
我々のジェネレータはユーザインタラクションデータから分離されており、識別器の性能を向上させるのに役立ちます。
利用者の暗黙の実体的嗜好を発見するために,グラフニューラルネットワークに基づく精巧な協調学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-03-28T05:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。