論文の概要: AWCD: An Efficient Point Cloud Processing Approach via Wasserstein
Curvature
- arxiv url: http://arxiv.org/abs/2105.04402v1
- Date: Tue, 11 May 2021 08:04:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-12 11:19:03.276831
- Title: AWCD: An Efficient Point Cloud Processing Approach via Wasserstein
Curvature
- Title(参考訳): AWCD: Wasserstein曲率による効率的なポイントクラウド処理アプローチ
- Authors: Yihao Luo and Ailing Yang and Fupeng Sun and Huafei Sun
- Abstract要約: adaptive wasserstein curvature denoising (awcd) は、ポイントクラウドデータのオリジナルの処理アプローチである。
awcdはデータのより正確な構造を検討し、高密度のノイズのあるデータでも安定性と有効性を維持する。
- 参考スコア(独自算出の注目度): 2.7069367389103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce the adaptive Wasserstein curvature denoising
(AWCD), an original processing approach for point cloud data. By collecting
curvatures information from Wasserstein distance, AWCD consider more precise
structures of data and preserves stability and effectiveness even for data with
noise in high density. This paper contains some theoretical analysis about the
Wasserstein curvature and the complete algorithm of AWCD. In addition, we
design digital experiments to show the denoising effect of AWCD. According to
comparison results, we present the advantages of AWCD against traditional
algorithms.
- Abstract(参考訳): 本稿では,アダプティブ・ワッサーシュタイン曲率分解法(AWCD)を提案する。
ワッサーシュタイン距離から曲率情報を収集することにより、AWCDはデータのより正確な構造を考慮し、高密度のノイズを持つデータに対しても安定性と有効性を維持する。
本稿では,wasserstein 曲率と awcd の完全アルゴリズムに関する理論的解析について述べる。
さらに,AWCDのデノイング効果を示すために,デジタル実験を設計する。
比較結果から,従来のアルゴリズムに対するAWCDの利点を示す。
関連論文リスト
- OTClean: Data Cleaning for Conditional Independence Violations using
Optimal Transport [51.6416022358349]
sysは、条件付き独立性(CI)制約下でのデータ修復に最適な輸送理論を利用するフレームワークである。
我々はSinkhornの行列スケーリングアルゴリズムにインスパイアされた反復アルゴリズムを開発し、高次元および大規模データを効率的に処理する。
論文 参考訳(メタデータ) (2024-03-04T18:23:55Z) - DAG-WGAN: Causal Structure Learning With Wasserstein Generative
Adversarial Networks [2.492300648514129]
本稿では、自動エンコーダアーキテクチャであるワッサーシュタインに基づく対向損失と非循環性制約を組み合わせたDAG-WGANを提案する。
同時に因果構造を学習し、ワッサーシュタイン距離メートル法から強度を利用することによりデータ生成能力を向上させる。
我々はDAG-WGANを最先端技術に対して評価し,その性能を実証した。
論文 参考訳(メタデータ) (2022-04-01T12:27:27Z) - PD-Flow: A Point Cloud Denoising Framework with Normalizing Flows [20.382995180671205]
ポイント・クラウド・デノゲーション(Point cloud denoising)は、ノイズや外れ値によって破損した生の観測からクリーン・ポイント・クラウドを復元することを目的としている。
本稿では,正規化フローとノイズ分散手法を取り入れた,ディープラーニングに基づく新しいDenoisingモデルを提案する。
論文 参考訳(メタデータ) (2022-03-11T14:17:58Z) - Towards Efficient Data-Centric Robust Machine Learning with Noise-based
Augmentation [10.859556815535706]
データ中心の機械学習は、AIモデルのパフォーマンスを改善するための適切なデータセットを構築する効果的な方法を見つけることを目的としている。
本稿では,ガウス雑音,ソルト・アンド・ペッパー雑音,PGD逆摂動からなる雑音に基づくデータ拡張手法を提案する。
提案手法は軽量なアルゴリズムに基づいて構築され,包括的評価に基づいて極めて有効であることが証明された。
論文 参考訳(メタデータ) (2022-03-08T02:05:40Z) - Projection Robust Wasserstein Barycenter [36.97843660480747]
ワッサースタイン・バリセンターの 近似は 次元の呪いのため 数値的に困難です
本稿では,次元の呪いを緩和するプロジェクションロバストなワッサーシュタインバリセンタ(PRWB)を提案する。
論文 参考訳(メタデータ) (2021-02-05T19:23:35Z) - Learning High Dimensional Wasserstein Geodesics [55.086626708837635]
高次元の2つの確率分布の間のワッサーシュタイン測地線を計算するための新しい定式化と学習戦略を提案する。
ラグランジュ乗算器の手法を最適輸送(OT)問題の動的定式化に適用することにより、サドル点がワッサーシュタイン測地線であるミニマックス問題を導出する。
次に、深層ニューラルネットワークによる関数のパラメータ化を行い、トレーニングのためのサンプルベースの双方向学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-02-05T04:25:28Z) - Continuous Wasserstein-2 Barycenter Estimation without Minimax
Optimization [94.18714844247766]
ワッサーシュタイン・バリセンターは、最適輸送に基づく確率測度の重み付き平均の幾何学的概念を提供する。
本稿では,Wasserstein-2 バリセンタのサンプルアクセスを演算するスケーラブルなアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-02T21:01:13Z) - Continuous Regularized Wasserstein Barycenters [51.620781112674024]
正規化ワッサーシュタイン・バリセンタ問題に対する新しい双対定式化を導入する。
我々は、強い双対性を確立し、対応する主対関係を用いて、正規化された輸送問題の双対ポテンシャルを用いて暗黙的にバリセンターをパラメトリゼーションする。
論文 参考訳(メタデータ) (2020-08-28T08:28:06Z) - Projection Robust Wasserstein Distance and Riemannian Optimization [107.93250306339694]
プロジェクション・ソリッドスタイン(PRW)は、ワッサーシュタイン・プロジェクション(WPP)のロバストな変種であることを示す。
本稿では,PRW距離の計算への第一歩として,その理論と実データに関する実験の関連について述べる。
論文 参考訳(メタデータ) (2020-06-12T20:40:22Z) - Robust Reinforcement Learning with Wasserstein Constraint [49.86490922809473]
最適なロバストなポリシーの存在を示し、摂動に対する感度分析を行い、新しいロバストな学習アルゴリズムを設計する。
提案アルゴリズムの有効性はCart-Pole環境で検証する。
論文 参考訳(メタデータ) (2020-06-01T13:48:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。