論文の概要: Nonlinear Hawkes Process with Gaussian Process Self Effects
- arxiv url: http://arxiv.org/abs/2105.09618v1
- Date: Thu, 20 May 2021 09:20:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-21 18:28:11.213379
- Title: Nonlinear Hawkes Process with Gaussian Process Self Effects
- Title(参考訳): ガウス過程自己効果をもつ非線形ホークス過程
- Authors: Noa Malem-Shinitski, Cesar Ojeda and Manfred Opper
- Abstract要約: ホークスプロセスは、歴史に依存した時間-連続的な点プロセスのモデル化に使用される。
本稿では、自己影響が興奮型と抑制型の両方である拡張モデルを提案する。
我々は、ホークス過程に対するベイズ的推論の行程を継続し、我々のアプローチは、後方の分岐構造を推定する必要性を解消する。
- 参考スコア(独自算出の注目度): 3.441953136999684
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditionally, Hawkes processes are used to model time--continuous point
processes with history dependence. Here we propose an extended model where the
self--effects are of both excitatory and inhibitory type and follow a Gaussian
Process. Whereas previous work either relies on a less flexible
parameterization of the model, or requires a large amount of data, our
formulation allows for both a flexible model and learning when data are scarce.
We continue the line of work of Bayesian inference for Hawkes processes, and
our approach dispenses with the necessity of estimating a branching structure
for the posterior, as we perform inference on an aggregated sum of Gaussian
Processes. Efficient approximate Bayesian inference is achieved via data
augmentation, and we describe a mean--field variational inference approach to
learn the model parameters. To demonstrate the flexibility of the model we
apply our methodology on data from three different domains and compare it to
previously reported results.
- Abstract(参考訳): 伝統的に、ホークス過程は履歴に依存した時間連続点過程のモデル化に使用される。
本稿では,自己効果が興奮型と抑制型の両方であり,ガウス過程に従う拡張モデルを提案する。
以前の作業では、モデルのより柔軟なパラメータ化に依存するか、大量のデータを必要とするかのどちらかでしたが、私たちの定式化は、データが不足している場合の柔軟なモデルと学習の両方を可能にします。
我々は,ホークス過程に対するベイズ的推論の行程を継続し,ガウス的過程の集合和上での推論を行うため,後方の分岐構造を推定する必要がなくなる。
効率的な近似ベイズ推定は,データ拡張によって実現され,モデルパラメータを学習するための平均場変分推論手法を提案する。
モデルの柔軟性を示すために、3つの異なるドメインのデータに我々の方法論を適用し、以前報告した結果と比較します。
関連論文リスト
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
拡散モデルは、生成的モデリングに大きな進歩をもたらした。
しかし、彼らの普及はデータ属性と解釈可能性に関する課題を引き起こす。
本稿では,テキスト・インフルエンス・ファンクション・フレームワークを開発することにより,このような課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - Fully Bayesian Differential Gaussian Processes through Stochastic Differential Equations [7.439555720106548]
本稿では、カーネルハイパーパラメータを確率変数として扱い、結合微分方程式(SDE)を構築して、その後部分布と誘導点を学習する完全ベイズ的手法を提案する。
提案手法は,SDE法による結合変数による時間変化,包括的,現実的な後部近似を提供する。
我々の研究はベイズ的推論を推し進めるためのエキサイティングな研究の道を開き、継続的なガウス的プロセスのための強力なモデリングツールを提供する。
論文 参考訳(メタデータ) (2024-08-12T11:41:07Z) - Inference at the data's edge: Gaussian processes for modeling and inference under model-dependency, poor overlap, and extrapolation [0.0]
ガウス過程 (GP) はフレキシブルな非線形回帰法である。
これは、予測された(非現実的な)値に対する不確実性を扱うための原則化されたアプローチを提供する。
これは外挿または弱い重なり合いの条件下では特に有用である。
論文 参考訳(メタデータ) (2024-07-15T05:09:50Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - Event Temporal Relation Extraction with Bayesian Translational Model [32.78633780463432]
本稿では,時間的関係表現を潜在変数としてモデル化する学習ベース手法であるBayesian-Transを紹介する。
従来のニューラルアプローチと比較して,提案手法はパラメータの後方分布を直接推定する。
論文 参考訳(メタデータ) (2023-02-10T00:11:19Z) - Bayesian Additive Main Effects and Multiplicative Interaction Models
using Tensor Regression for Multi-environmental Trials [0.0]
本稿では,複数の因子が表現型予測に与える影響を考慮したベイズテンソル回帰モデルを提案する。
我々は、モデルのパラメータ間で生じる可能性のある識別可能性の問題を解決するための、事前分布のセットを採用する。
我々は2010年から2019年までのアイルランドにおける小麦生産に関する実世界のデータを分析して、我々のモデルの適用性を探る。
論文 参考訳(メタデータ) (2023-01-09T19:54:50Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Collaborative Nonstationary Multivariate Gaussian Process Model [2.362467745272567]
我々は、協調非定常ガウス過程モデル(CNMGP)と呼ばれる新しいモデルを提案する。
CNMGPは、出力が共通の入力セットを共有していないデータを、入力と出力のサイズに依存しない計算複雑性でモデル化することができる。
また,本モデルでは,出力毎に異なる時間変化相関を推定し,予測性能の向上を図っている。
論文 参考訳(メタデータ) (2021-06-01T18:25:22Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。