論文の概要: An Optical physics inspired CNN approach for intrinsic image
decomposition
- arxiv url: http://arxiv.org/abs/2105.10076v1
- Date: Fri, 21 May 2021 00:54:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-25 03:27:56.934727
- Title: An Optical physics inspired CNN approach for intrinsic image
decomposition
- Title(参考訳): 光学物理による固有画像分解のためのCNNアプローチ
- Authors: Harshana Weligampola, Gihan Jayatilaka, Suren Sritharan, Parakrama
Ekanayake, Roshan Ragel, Vijitha Herath, Roshan Godaliyadda
- Abstract要約: 内在画像分解は、画像の構成成分を生成する開放的な問題である。
画像から導出した物理パラメータを用いてこの分解が可能なニューラルネットワークアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intrinsic Image Decomposition is an open problem of generating the
constituents of an image. Generating reflectance and shading from a single
image is a challenging task specifically when there is no ground truth. There
is a lack of unsupervised learning approaches for decomposing an image into
reflectance and shading using a single image. We propose a neural network
architecture capable of this decomposition using physics-based parameters
derived from the image. Through experimental results, we show that (a) the
proposed methodology outperforms the existing deep learning-based IID
techniques and (b) the derived parameters improve the efficacy significantly.
We conclude with a closer analysis of the results (numerical and example
images) showing several avenues for improvement.
- Abstract(参考訳): 内在画像分解は、画像の構成成分を生成するオープンな問題である。
一つの画像から反射と陰影を生成することは、特に根拠のない場合に難しい課題である。
イメージをリフレクタンスに分解し、単一のイメージでシェーディングするための教師なしの学習アプローチが欠如している。
画像から導出した物理パラメータを用いてこの分解が可能なニューラルネットワークアーキテクチャを提案する。
実験結果から,提案手法が既存のディープラーニング IID 技術より優れていること,および (b) 導出パラメータが有効性を大幅に向上すること,などが示された。
結果(数値画像,実例画像)のより詳細な分析により,改善の道筋が示されている。
関連論文リスト
- Research on Image Super-Resolution Reconstruction Mechanism based on Convolutional Neural Network [8.739451985459638]
超解像アルゴリズムは、同一シーンから撮影された1つ以上の低解像度画像を高解像度画像に変換する。
再構成過程における画像の特徴抽出と非線形マッピング手法は,既存のアルゴリズムでは依然として困難である。
目的は、高解像度の画像から高品質で高解像度の画像を復元することである。
論文 参考訳(メタデータ) (2024-07-18T06:50:39Z) - Joint Learning of Deep Texture and High-Frequency Features for
Computer-Generated Image Detection [24.098604827919203]
本稿では,CG画像検出のための深いテクスチャと高周波特徴を有する共同学習戦略を提案する。
セマンティックセグメンテーションマップを生成して、アフィン変換操作を誘導する。
原画像と原画像の高周波成分の組み合わせを、注意機構を備えたマルチブランチニューラルネットワークに供給する。
論文 参考訳(メタデータ) (2022-09-07T17:30:40Z) - Efficient Textured Mesh Recovery from Multiple Views with Differentiable
Rendering [8.264851594332677]
マルチビュー画像からテクスチャメッシュを復元する手法を提案する。
学習ベース多視点ステレオアルゴリズムにより予測される深度との差を最小化することにより形状形状を最適化する。
形状や色に対する暗黙的なニューラル表現とは対照的に,物体の光と反射を共同で推定する物理ベース逆レンダリング方式を導入する。
論文 参考訳(メタデータ) (2022-05-25T03:33:55Z) - Efficient and Differentiable Shadow Computation for Inverse Problems [64.70468076488419]
微分可能幾何計算は画像に基づく逆問題に対する関心が高まっている。
微分可能な可視性とソフトシャドウ計算のための効率的かつ効率的なアプローチを提案する。
定式化は微分可能であるため, テクスチャ, 照明, 剛体ポーズ, 画像からの変形回復などの逆問題を解くために使用できる。
論文 参考訳(メタデータ) (2021-04-01T09:29:05Z) - Uncalibrated Neural Inverse Rendering for Photometric Stereo of General
Surfaces [103.08512487830669]
本稿では,測光ステレオ問題に対する無補間深層ニューラルネットワークフレームワークを提案する。
既存のニューラルネットワークベースの方法は、物体の正確な光方向または接地正則のいずれかまたは両方を必要とします。
本稿では,この問題に対する未調整の神経逆レンダリング手法を提案する。
論文 参考訳(メタデータ) (2020-12-12T10:33:08Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z) - Depth image denoising using nuclear norm and learning graph model [107.51199787840066]
グループベース画像復元法は,パッチ間の類似性収集に有効である。
各パッチに対して、検索ウィンドウ内で最もよく似たパッチを見つけ、グループ化する。
提案手法は, 主観的, 客観的両面において, 最先端の復調法よりも優れている。
論文 参考訳(メタデータ) (2020-08-09T15:12:16Z) - Learning Spatial Relationships between Samples of Patent Image Shapes [14.37369942979269]
深層学習(DL)の成功を橋渡しするバイナリ画像に適した手法を提案する。
本手法は、二元画像から興味の形状を抽出し、非ユークリッド幾何学的ニューラルネットワークアーキテクチャを適用して、形状の局所的および大域的空間的関係を学習する。
論文 参考訳(メタデータ) (2020-04-12T23:05:19Z) - Multimodal Deep Unfolding for Guided Image Super-Resolution [23.48305854574444]
ディープラーニング手法は、低解像度の入力から高解像度の出力へのエンドツーエンドのマッピングを学習するために、トレーニングデータに依存する。
本稿では,スパース事前を組み込んだマルチモーダル深層学習設計を提案し,他の画像モダリティからの情報をネットワークアーキテクチャに効果的に統合する。
提案手法は,サイド情報を用いた畳み込みスパース符号化の反復的アルゴリズムに類似した,新しい展開演算子に依存している。
論文 参考訳(メタデータ) (2020-01-21T14:41:53Z) - Single image reflection removal via learning with multi-image
constraints [50.54095311597466]
本稿では、上記のアプローチの利点を組み合わせ、その欠点を克服する新しい学習ベースソリューションを提案する。
提案アルゴリズムはディープニューラルネットワークを学習して、複数の入力画像間で強化されたジョイント制約でターゲットを最適化する。
我々のアルゴリズムは実画像上でリアルタイムかつ最先端の反射除去性能で動作する。
論文 参考訳(メタデータ) (2019-12-08T06:10:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。