論文の概要: Generative Network-Based Reduced-Order Model for Prediction, Data
Assimilation and Uncertainty Quantification
- arxiv url: http://arxiv.org/abs/2105.13859v4
- Date: Tue, 5 Sep 2023 09:41:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 12:34:31.103397
- Title: Generative Network-Based Reduced-Order Model for Prediction, Data
Assimilation and Uncertainty Quantification
- Title(参考訳): 予測・データ同化・不確実性定量化のための生成ネットワークに基づく減次モデル
- Authors: Vinicius L. S. Silva, Claire E. Heaney, Nenko Nenov, Christopher C.
Pain
- Abstract要約: 本稿では,生成ネットワーク(GN)を低次モデル(ROM)フレームワークに統合する手法を提案する。
目的は、利用可能な測定値に一致し、物理シミュレーションの状態とパラメータに関連する、対応する不確かさを推定することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new method in which a generative network (GN) integrate into a
reduced-order model (ROM) framework is used to solve inverse problems for
partial differential equations (PDE). The aim is to match available
measurements and estimate the corresponding uncertainties associated with the
states and parameters of a numerical physical simulation. The GN is trained
using only unconditional simulations of the discretized PDE model. We compare
the proposed method with the golden standard Markov chain Monte Carlo. We apply
the proposed approaches to a spatio-temporal compartmental model in
epidemiology. The results show that the proposed GN-based ROM can efficiently
quantify uncertainty and accurately match the measurements and the golden
standard, using only a few unconditional simulations of the full-order
numerical PDE model.
- Abstract(参考訳): 本稿では,偏微分方程式(pde)の逆問題を解くために,生成ネットワーク(gn)を還元次モデル(rom)フレームワークに統合する新しい手法を提案する。
その目的は、利用可能な測定値と一致し、数値物理シミュレーションの状態やパラメータに関連する不確かさを推定することである。
GNは離散化PDEモデルの無条件シミュレーションのみを用いて訓練される。
提案手法と黄金標準マルコフ連鎖モンテカルロとの比較を行った。
提案手法を疫学における時空間分割モデルに適用する。
提案したGNベースのROMは,実数値PDEモデルの無条件シミュレーションを用いて,不確実性を効率よく定量化し,測定値と黄金標準を正確に一致させることができることを示す。
関連論文リスト
- Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
本稿では,拡散モデルのためのGMSと呼ばれる,SDEに基づく新しい解法について紹介する。
画像生成およびストロークベース合成におけるサンプル品質の観点から,SDEに基づく多くの解法よりも優れる。
論文 参考訳(メタデータ) (2023-11-02T02:05:38Z) - Efficient Training of Energy-Based Models Using Jarzynski Equality [13.636994997309307]
エネルギーベースモデル(英: Energy-based model、EBM)は、統計物理学にインスパイアされた生成モデルである。
モデルパラメータに対する勾配の計算には、モデルの分布をサンプリングする必要がある。
ここでは、ジャジンスキーの等式に基づく非平衡熱力学の結果を用いて、この計算を効率的に行う方法を示す。
論文 参考訳(メタデータ) (2023-05-30T21:07:52Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Deep Learning Aided Laplace Based Bayesian Inference for Epidemiological
Systems [2.596903831934905]
本稿では,Laplace をベースとしたベイズ推定と ANN アーキテクチャを併用して ODE 軌道の近似を求めるハイブリッド手法を提案する。
本手法の有効性を,非分析的ソリューションを用いた疫学システム,Susceptible-Infectious-Demoved (SIR) モデルを用いて実証した。
論文 参考訳(メタデータ) (2022-10-17T09:02:41Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Information Theoretic Structured Generative Modeling [13.117829542251188]
構造生成モデル (Structured Generative Model, SGM) と呼ばれる新しい生成モデルフレームワークが提案され, 簡単な最適化が可能となった。
この実装では、無限のガウス混合モデルを学習するために適合した単一白色ノイズ源への正則入力によって駆動される1つのニューラルネットワークを採用している。
予備的な結果は、SGMがデータ効率と分散、従来のガウス混合モデルと変分混合モデル、および敵ネットワークのトレーニングにおいてMINE推定を著しく改善することを示している。
論文 参考訳(メタデータ) (2021-10-12T07:44:18Z) - Community Detection in the Stochastic Block Model by Mixed Integer
Programming [3.8073142980733]
Degree-Corrected Block Model (DCSBM) は、コミュニティ構造を持つランダムグラフを生成する一般的なモデルである。
DCSBMに基づくコミュニティ検出の標準的なアプローチは、最大推定(MLE)により観測されたネットワークデータを生成する可能性が最も高いモデルパラメータを探索することである。
本稿では,モデルパラメータと最大確率のコミュニティ割当を観測グラフから確実に求める数学的計画式と厳密解法を提案する。
論文 参考訳(メタデータ) (2021-01-26T22:04:40Z) - Autoregressive Score Matching [113.4502004812927]
自動回帰条件スコアモデル(AR-CSM)を提案する。
AR-CSMモデルでは、このデータ分布とモデル分布のばらつきを効率的に計算し、最適化することができ、高価なサンプリングや対向訓練を必要としない。
本研究では,合成データに対する密度推定,画像生成,画像復調,暗黙エンコーダを用いた潜在変数モデルの訓練に応用できることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:01:24Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z) - Adaptive Physics-Informed Neural Networks for Markov-Chain Monte Carlo [2.741266294612776]
確率関数の計算にPDEを解く必要があるパラメータ推定問題に焦点をあてる。
提案手法は,(1)フォワードモデルへの近似としてオフラインPINN-UQモデルを構築し,(2)MCMCサンプルから生成されたサンプルを用いて,この近似モデルをフライで精製する。
本稿では,ポアソン方程式に支配されるシステムのパラメータ推定問題の解法として,提案手法の性能を数値的に示す。
論文 参考訳(メタデータ) (2020-08-03T15:25:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。