Exploring to establish an appropriate model for mage aesthetic
assessment via CNN-based RSRL: An empirical study
- URL: http://arxiv.org/abs/2106.03316v1
- Date: Mon, 7 Jun 2021 03:20:00 GMT
- Title: Exploring to establish an appropriate model for mage aesthetic
assessment via CNN-based RSRL: An empirical study
- Authors: Ying Dai
- Abstract summary: A D-measure which reflects the disentanglement degree of the final layer FC nodes of CNN is introduced.
An algorithm of determining the optimal model from the multiple photo score prediction models is proposed.
- Score: 3.8073142980733
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To establish an appropriate model for photo aesthetic assessment, in this
paper, a D-measure which reflects the disentanglement degree of the final layer
FC nodes of CNN is introduced. By combining F-measure with D-measure to obtain
a FD measure, an algorithm of determining the optimal model from the multiple
photo score prediction models generated by CNN-based repetitively self-revised
learning(RSRL) is proposed. Furthermore, the first fixation perspective(FFP)
and the assessment interest region(AIR) of the models are defined and
calculated. The experimental results show that the FD measure is effective for
establishing the appropriate model from the multiple score prediction models
with different CNN structures. Moreover, the FD-determined optimal models with
the comparatively high FD always have the FFP an AIR which are close to the
human's aesthetic perception when enjoying photos.
Related papers
- Opinion-Unaware Blind Image Quality Assessment using Multi-Scale Deep Feature Statistics [54.08757792080732]
We propose integrating deep features from pre-trained visual models with a statistical analysis model to achieve opinion-unaware BIQA (OU-BIQA)
Our proposed model exhibits superior consistency with human visual perception compared to state-of-the-art BIQA models.
arXiv Detail & Related papers (2024-05-29T06:09:34Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
We propose an effective method called Latent Semantic Consensus (LSC)
LSC formulates the model fitting problem into two latent semantic spaces based on data points and model hypotheses.
LSC is able to provide consistent and reliable solutions within only a few milliseconds for general multi-structural model fitting.
arXiv Detail & Related papers (2024-03-11T05:35:38Z) - ProvNeRF: Modeling per Point Provenance in NeRFs as a Stochastic Field [52.09661042881063]
We propose an approach that models the bfprovenance for each point -- i.e., the locations where it is likely visible -- of NeRFs as a text field.
We show that modeling per-point provenance during the NeRF optimization enriches the model with information on leading to improvements in novel view synthesis and uncertainty estimation.
arXiv Detail & Related papers (2024-01-16T06:19:18Z) - Diffusion Model Alignment Using Direct Preference Optimization [103.2238655827797]
Diffusion-DPO is a method to align diffusion models to human preferences by directly optimizing on human comparison data.
We fine-tune the base model of the state-of-the-art Stable Diffusion XL (SDXL)-1.0 model with Diffusion-DPO.
We also develop a variant that uses AI feedback and has comparable performance to training on human preferences.
arXiv Detail & Related papers (2023-11-21T15:24:05Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - A positive feedback method based on F-measure value for Salient Object
Detection [1.9249287163937976]
This paper proposes a positive feedback method based on F-measure value for salient object detection (SOD)
Our proposed method takes an image to be detected and inputs it into several existing models to obtain their respective prediction maps.
Experimental results on five publicly available datasets show that our proposed positive feedback method outperforms the latest 12 methods in five evaluation metrics for saliency map prediction.
arXiv Detail & Related papers (2023-04-28T04:05:13Z) - Exploring CNN-based models for image's aesthetic score prediction with
using ensemble [3.8073142980733]
We proposed a framework of constructing two types of the automatic image aesthetics assessment models with different CNN architectures.
The attention regions of the models to the images are extracted to analyze the consistency with the subjects in the images.
It is found that the AS classification models trained on XiheAA dataset seem to learn the latent photography principles, although it can't be said that they learn the aesthetic sense.
arXiv Detail & Related papers (2022-10-11T03:23:07Z) - The Best of Both Worlds: Combining Model-based and Nonparametric
Approaches for 3D Human Body Estimation [20.797162096899154]
We propose a framework for estimating model parameters from global image features.
A dense map prediction module explicitly establishes the dense UV correspondence between the image evidence and each part of the body model.
In inverse kinematics module refines the key point prediction and generates a posed template mesh.
A UV inpainting module relies on the corresponding feature, prediction and the posed template, and completes the predictions of occluded body shape.
arXiv Detail & Related papers (2022-05-01T16:39:09Z) - Prototype Guided Federated Learning of Visual Feature Representations [15.021124010665194]
Federated Learning (FL) is a framework which enables distributed model training using a large corpus of decentralized training data.
Existing methods aggregate models disregarding their internal representations, which are crucial for training models in vision tasks.
We introduce FedProto, which computes client deviations using margins of representations learned on distributed data.
arXiv Detail & Related papers (2021-05-19T08:29:12Z) - A Deep Drift-Diffusion Model for Image Aesthetic Score Distribution
Prediction [68.76594695163386]
We propose a Deep Drift-Diffusion model inspired by psychologists to predict aesthetic score distribution from images.
The DDD model can describe the psychological process of aesthetic perception instead of traditional modeling of the results of assessment.
Our novel DDD model is simple but efficient, which outperforms the state-of-the-art methods in aesthetic score distribution prediction.
arXiv Detail & Related papers (2020-10-15T11:01:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.