論文の概要: Time scaling and quantum speed limit in non-Hermitian Hamiltonians
- arxiv url: http://arxiv.org/abs/2106.05155v1
- Date: Wed, 9 Jun 2021 15:56:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-27 04:20:13.111924
- Title: Time scaling and quantum speed limit in non-Hermitian Hamiltonians
- Title(参考訳): 非エルミートハミルトニアンにおける時間スケーリングと量子速度制限
- Authors: F. Impens, F. M. D'Angelis, F. A. Pinheiro and D. Gu\'ery-Odelin
- Abstract要約: 非エルミート系における量子プロトコルの性能向上のための時間スケーリング手法について報告する。
非エルミート的ハミルトニアンによって支配される系の量子速度限界を導出する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We report on a time scaling technique to enhance the performances of quantum
protocols in non-Hermitian systems. The considered time scaling involves no
extra-couplings and yields a significant enhancement of the quantum fidelity
for a comparable amount of resources. We discuss the application of this
technique to quantum state transfers in 2 and 3-level open quantum systems. We
derive the quantum speed limit in a system governed by a non-Hermitian
Hamiltonian. Interestingly, we show that, with an appropriate driving, the
time-scaling technique preserves the optimality of the quantum speed with
respect to the quantum speed limit while reducing significantly the damping of
the quantum state norm.
- Abstract(参考訳): 非エルミート系における量子プロトコルの性能向上のための時間スケーリング手法について報告する。
考慮された時間スケーリングは、余剰結合を伴わず、同等の量のリソースに対する量子忠実度を大幅に向上させる。
2次および3次開量子系における量子状態転移へのこの技術の適用について論じる。
非エルミート的ハミルトニアンによって支配される系の量子速度限界を導出する。
興味深いことに、適切な駆動により、時間スケール技術は量子速度限界に対する量子速度の最適性を維持しつつ、量子状態ノルムの減衰を大幅に減少させる。
関連論文リスト
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Quantum Acceleration Limit [0.0]
量子加速はハミルトニアン微分のゆらぎによって上界であることが証明される。
これは量子加速限界(英語版)(QAL)につながり、量子系が加速されるのに必要な最低時間は何かという疑問に答える。
論文 参考訳(メタデータ) (2023-12-01T18:45:28Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Exact Quantum Speed Limits [0.0]
純状態量子系のユニタリ力学に対する正確な量子速度制限を導出する。
2次元および高次元量子系の進化時間を推定する。
結果は、量子物理学の理解に大きな影響を与えるだろう。
論文 参考訳(メタデータ) (2023-05-05T20:38:54Z) - Quantum Speed Limit for Change of Basis [55.500409696028626]
量子速度制限の概念を量子状態の集合に拡張する。
2量子系に対して、最も高速な変換は2つのアダマールを同時に実装し、キュービットをスワップすることを示した。
キュートリット系では、進化時間は偏りのない基底の特定のタイプに依存する。
論文 参考訳(メタデータ) (2022-12-23T14:10:13Z) - Entanglement-assisted quantum speedup: Beating local quantum speed limits [0.0]
量子情報科学の研究は、古典的な情報処理のスケーリングの限界を超えることを目的としている。
相互作用量子系の速度制限は、実際の量子力学における変化率を比較することによって導かれる。
提案された速度制限は、システムのサイズと指数関数的にスケールできる量子ゲインを含む、量子速度の優位性に厳密な拘束力を与える。
論文 参考訳(メタデータ) (2022-11-27T17:38:57Z) - Generalised quantum speed limit for arbitrary time-continuous evolution [0.0]
量子力学の幾何学的アプローチを用いて、任意の時間連続進化のための一般化された量子速度限界(GQSL)を導出する。
GQSLは、ユニタリ、非ユニタリ、完全正、非完全正、相対論的量子力学の量子系に適用できる。
論文 参考訳(メタデータ) (2022-07-08T21:00:11Z) - Quantum speed limit for the creation and decay of quantum correlations [0.0]
我々は、量子相関の生成と崩壊のために、量子速度制限時間に基づいてMargolus-LevitinとMandelstamm-Tamm型を導出した。
我々は、バーズ距離に基づく測度を用いて定量化されている量子相関の絡み合いと量子不協和測度について考察する。
論文 参考訳(メタデータ) (2022-05-24T08:00:40Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
想像時間における進化は、量子多体系の基底状態を見つけるための顕著な技術である。
本稿では,量子コンピュータ上での仮想時間伝搬を実現するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-24T12:48:00Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
本稿では,現実的な雑音に依拠する新しい量子通信方式を提案する。
性能分析の結果,提案手法は競争力のあるQBER, 利得, 利得を提供することがわかった。
論文 参考訳(メタデータ) (2020-12-22T13:06:12Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Googleの最近の量子超越性実験は、量子コンピューティングがランダムな回路サンプリングという計算タスクを実行する遷移点を示している。
観測された量子ランタイムの利点の制約を、より多くの量子ビットとゲートで検討する。
論文 参考訳(メタデータ) (2020-05-05T20:11:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。