論文の概要: Quantum Natural Gradient for Variational Bayes
- arxiv url: http://arxiv.org/abs/2106.05807v1
- Date: Thu, 10 Jun 2021 15:15:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-11 20:12:37.385745
- Title: Quantum Natural Gradient for Variational Bayes
- Title(参考訳): 変分ベイのための量子自然勾配
- Authors: Anna Lopatnikova and Minh-Ngoc Tran
- Abstract要約: 変分ベイズ(VB)は、機械学習と統計学において重要な手法である。
本稿では,自然勾配計算のスケーリング特性を改善するために,ハイブリッド量子古典アルゴリズムを提案する。
標準条件下では、量子自然勾配のVBアルゴリズムは収束することが保証される。
- 参考スコア(独自算出の注目度): 2.3757641219977392
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational Bayes (VB) is a critical method in machine learning and
statistics, underpinning the recent success of Bayesian deep learning. The
natural gradient is an essential component of efficient VB estimation, but it
is prohibitively computationally expensive in high dimensions. We propose a
hybrid quantum-classical algorithm to improve the scaling properties of natural
gradient computation and make VB a truly computationally efficient method for
Bayesian inference in highdimensional settings. The algorithm leverages matrix
inversion from the linear systems algorithm by Harrow, Hassidim, and Lloyd
[Phys. Rev. Lett. 103, 15 (2009)] (HHL). We demonstrate that the matrix to be
inverted is sparse and the classical-quantum-classical handoffs are
sufficiently economical to preserve computational efficiency, making the
problem of natural gradient for VB an ideal application of HHL. We prove that,
under standard conditions, the VB algorithm with quantum natural gradient is
guaranteed to converge.
- Abstract(参考訳): 変分ベイズ(VB)は機械学習と統計学において重要な手法であり、最近のベイズ深層学習の成功を支えている。
自然勾配は効率的なVB推定の必須成分であるが、高次元では計算コストが禁じられている。
本稿では,自然勾配計算のスケーリング性を向上させるためのハイブリッド量子古典アルゴリズムを提案する。
このアルゴリズムはHarrow, Hassidim, Lloyd [Phys] による線形システムアルゴリズムからの行列逆変換を利用する。
Rev
Lett!
103, 15 (2009)] (HHL)。
逆行列はスパースであり、古典的量子古典的ハンドオフは計算効率を維持するのに十分な経済的であり、VBの自然勾配の問題がHHLの理想的な応用であることを示す。
標準条件下では、量子自然勾配を持つvbアルゴリズムが収束することが保証される。
関連論文リスト
- Optimised Hybrid Classical-Quantum Algorithm for Accelerated Solution of Sparse Linear Systems [0.0]
本稿では, 疎線形系をより効率的に解くために, プレコンディショニング手法とHHLアルゴリズムを組み合わせるハイブリッド古典量子アルゴリズムを提案する。
提案手法は,高速化とスケーラビリティにおいて従来の手法を超越するだけでなく,量子アルゴリズムの本質的な制約を緩和することを示す。
論文 参考訳(メタデータ) (2024-10-03T11:36:14Z) - Constrained Bi-Level Optimization: Proximal Lagrangian Value function
Approach and Hessian-free Algorithm [8.479947546216131]
We developed a Hessian-free gradient-based algorithm-termed proximal Lagrangian Value function-based Hessian-free Bi-level Algorithm (LV-HBA)
LV-HBAは特に機械学習アプリケーションに適している。
論文 参考訳(メタデータ) (2024-01-29T13:50:56Z) - Hybrid algorithm simulating non-equilibrium steady states of an open
quantum system [10.752869788647802]
非平衡定常状態は開量子系の研究の焦点である。
これらの定常状態を探すための従来の変分アルゴリズムは、資源集約的な実装に悩まされてきた。
我々は、リンドブラッド方程式の演算子-サム形式をシミュレートすることにより、非平衡定常状態の効率的な探索を行う新しい変分量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-13T01:57:27Z) - Pure Quantum Gradient Descent Algorithm and Full Quantum Variational
Eigensolver [0.7149735232319818]
勾配勾配勾配勾配法は広く採用されている最適化法である。
単一オラクル計算のみを必要とする新しい量子ベース勾配計算法を提案する。
我々は量子勾配降下法をうまく実装し、変分量子固有解法(VQE)に適用した。
論文 参考訳(メタデータ) (2023-05-07T05:52:41Z) - Scalable Bayesian Meta-Learning through Generalized Implicit Gradients [64.21628447579772]
Inlicit Bayesian Meta-learning (iBaML) 法は、学習可能な事前のスコープを広げるだけでなく、関連する不確実性も定量化する。
解析誤差境界は、明示的よりも一般化された暗黙的勾配の精度と効率を示すために確立される。
論文 参考訳(メタデータ) (2023-03-31T02:10:30Z) - Quantum Advantage in Variational Bayes Inference [0.0]
非古典的量子アニール法に基づく変分ベイズ(VB)推論アルゴリズムについて検討する。
このような優れた性能は、量子力学の鍵となる概念に根ざしていることを示す。
また,QAVBの更新式は,ステップ毎に$lceil log K rceil$ qubitsと$mathcalO (K)$演算を用いて実装可能であることを示す。
論文 参考訳(メタデータ) (2022-07-07T06:06:36Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
本稿では,n+1$ qubitsしか使用しないGoemans-Williamsonアルゴリズムの変分量子アルゴリズムを提案する。
補助量子ビット上で適切にパラメータ化されたユニタリ条件として目的行列を符号化することにより、効率的な最適化を実現する。
各種NPハード問題に対して,Goemans-Williamsonアルゴリズムの量子的効率的な実装を考案し,提案プロトコルの有効性を実証する。
論文 参考訳(メタデータ) (2022-06-30T03:15:23Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
本稿では,2次非制約二項最適化の事例に対する近似解を求める古典的アルゴリズムを提案する。
我々は、チューニング可能な硬さと植え付けソリューションを備えた大規模問題インスタンスに対して、我々のアプローチをベンチマークする。
論文 参考訳(メタデータ) (2021-08-18T09:26:17Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
我々は、リコメンダシステムと最小二乗回帰のためのクエリをサポートする古典的な(量子でない)動的データ構造を作成する。
これらの問題に対する以前の量子インスパイアされたアルゴリズムは、レバレッジやリッジレベレッジスコアを偽装してサンプリングしていると我々は主張する。
論文 参考訳(メタデータ) (2020-11-09T01:13:07Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
スケッチに基づくL2正規化最小二乗問題の解法を提案する。
我々は、最も人気のあるランダム埋め込みの2つ、すなわちガウス埋め込みとサブサンプリングランダム化アダマール変換(SRHT)を考える。
論文 参考訳(メタデータ) (2020-06-10T15:00:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。