論文の概要: A News-based Machine Learning Model for Adaptive Asset Pricing
- arxiv url: http://arxiv.org/abs/2106.07103v1
- Date: Sun, 13 Jun 2021 22:38:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-15 16:18:42.566657
- Title: A News-based Machine Learning Model for Adaptive Asset Pricing
- Title(参考訳): 適応資産価格のためのニュースベース機械学習モデル
- Authors: Liao Zhu, Haoxuan Wu, Martin T. Wells
- Abstract要約: 本稿は,NEUS(News Embedding UMAP Selection)モデルという新たなアセット価格モデルを提案する。
この新しいモデルは、Fama-French 5-factorモデルよりもはるかに優れたフィッティングと予測能力を持つことが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paper proposes a new asset pricing model -- the News Embedding UMAP
Selection (NEUS) model, to explain and predict the stock returns based on the
financial news. Using a combination of various machine learning algorithms, we
first derive a company embedding vector for each basis asset from the financial
news. Then we obtain a collection of the basis assets based on their company
embedding. After that for each stock, we select the basis assets to explain and
predict the stock return with high-dimensional statistical methods. The new
model is shown to have a significantly better fitting and prediction power than
the Fama-French 5-factor model.
- Abstract(参考訳): 本稿では、金融ニュースに基づいて株価のリターンを説明・予測するために、新たな資産価格モデル、ニューズ埋め込みUMAP選択(NEUS)モデルを提案する。
さまざまな機械学習アルゴリズムの組み合わせを用いて、まず、財務ニュースから各ベース資産の埋め込みベクトルを導出する。
そして、それらの企業の埋め込みに基づいて基礎資産のコレクションを得る。
その後、各株について、高次元統計手法で株価のリターンを説明し予測するための基本資産を選択する。
この新しいモデルは、Fama-French 5-factorモデルよりもはるかに優れた適合性と予測能力を持つ。
関連論文リスト
- A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
我々は、複数の異なるモデルを活用するための新しいフレームワーク、CETNet(Collaborative Ensemble Training Network)を提案する。
ナイーブなモデルスケーリングとは違って,私たちのアプローチは,共同学習による多様性とコラボレーションを重視しています。
当社のフレームワークは,Metaの3つのパブリックデータセットと大規模産業データセットに基づいて検証する。
論文 参考訳(メタデータ) (2024-11-20T20:38:56Z) - BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
本稿では,時系列予測や資産価格の急上昇の予測に特化して,新たな大規模言語モデル(LLM)アーキテクチャであるBreakGPTを紹介する。
我々は、最小限のトレーニングで財務予測を行うための有望なソリューションとしてBreakGPTを紹介し、局所的およびグローバルな時間的依存関係をキャプチャする強力な競合相手として紹介する。
論文 参考訳(メタデータ) (2024-11-09T05:40:32Z) - AAPM: Large Language Model Agent-based Asset Pricing Models [4.326886488307076]
本稿では, LLMエージェントからの質的意思決定的投資分析と, 定量的な手動経済要因を融合した新たな資産価格手法を提案する。
実験結果から,本手法はポートフォリオ最適化および資産価格誤差において,機械学習に基づく資産価格ベースラインよりも優れていることが示された。
論文 参考訳(メタデータ) (2024-09-25T18:27:35Z) - Numerical Claim Detection in Finance: A New Financial Dataset, Weak-Supervision Model, and Market Analysis [4.575870619860645]
ファイナンシャルドメインにおけるクレーム検出タスクのための新たな財務データセットを構築した。
本稿では,対象物の専門家(SME)の知識を集約関数に組み込んだ,新たな弱スーパービジョンモデルを提案する。
ここでは、利益の急落と楽観的な指標への回帰の依存を観察する。
論文 参考訳(メタデータ) (2024-02-18T22:55:26Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、さまざまなメトリクスの使用を可能にします。
我々は、Structured Entity extractを導入し、Adroximate Entity Set OverlaPメトリックを提案し、この分野にコントリビュートします。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - American Option Pricing using Self-Attention GRU and Shapley Value
Interpretation [0.0]
本稿では,ゲートリカレントユニット(GRU)と自己認識機構に基づいて,SPY(ETF)オプションの価格を予測する機械学習手法を提案する。
我々は、多層パーセプトロン(MLP)、長期記憶(LSTM)、自己注意型LSTM、自己注意型GRUの4つの異なる機械学習モデルを構築した。
論文 参考訳(メタデータ) (2023-10-19T06:05:46Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
オンラインで適応的な環境で株価予測を行うファクターモデルを構築することは、依然としてオープンな疑問である。
本稿では,オンラインおよび適応型要素モデルであるHireVAEを,市場状況とストックワイド潜在要因の関係を埋め込んだ階層型潜在空間として提案する。
4つの一般的な実市場ベンチマークにおいて、提案されたHireVAEは、以前の手法よりもアクティブリターンの点で優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-06-05T12:58:13Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Federated Learning Aggregation: New Robust Algorithms with Guarantees [63.96013144017572]
エッジでの分散モデルトレーニングのために、フェデレートラーニングが最近提案されている。
本稿では,連合学習フレームワークにおける集約戦略を評価するために,完全な数学的収束解析を提案する。
損失の値に応じてクライアントのコントリビューションを差別化することで、モデルアーキテクチャを変更できる新しい集約アルゴリズムを導出する。
論文 参考訳(メタデータ) (2022-05-22T16:37:53Z) - Machine Learning for Stock Prediction Based on Fundamental Analysis [13.920569652186714]
フィードフォワードニューラルネットワーク(FNN)、ランダムフォレスト(RF)、適応型ニューラルファジィ推論システム(ANFIS)の3つの機械学習アルゴリズムについて検討する。
RFモデルは最高の予測結果を達成し,FNNとANFISのテスト性能を向上させることができる。
この結果から, 機械学習モデルは, 株式投資に関する意思決定において, 基礎アナリストの助けとなる可能性が示唆された。
論文 参考訳(メタデータ) (2022-01-26T18:48:51Z) - Deep Learning for Portfolio Optimization [5.833272638548154]
個々の資産を選択する代わりに、ポートフォリオを形成するために市場指標のETF(Exchange-Traded Funds)を交換します。
我々は,本手法を広範囲のアルゴリズムと比較し,本モデルがテスト期間中に最高の性能を得ることを示す。
論文 参考訳(メタデータ) (2020-05-27T21:28:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。