論文の概要: Bayesian dense inverse searching algorithm for real-time stereo matching
in minimally invasive surgery
- arxiv url: http://arxiv.org/abs/2106.07136v1
- Date: Mon, 14 Jun 2021 02:26:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-16 05:08:26.693561
- Title: Bayesian dense inverse searching algorithm for real-time stereo matching
in minimally invasive surgery
- Title(参考訳): 低侵襲手術におけるリアルタイムステレオマッチングのためのベイズ密度逆探索アルゴリズム
- Authors: Jingwei Song, Qiuchen Zhu, Jianyu Lin, and Maani Ghaffari
- Abstract要約: 手術画像のCPUレベルリアルタイムステレオマッチング法について報告する(i5-9400の単一コアを持つ640×480画像の10Hz)。
提案手法は,ステレオ画像の差分を推定する高速な'dense inverse search'アルゴリズムに基づいて構築される。
実験の結果, 手術シナリオにおいて, 推定深度は基準法よりも精度が高く, アウトリーチも少ないことが明らかとなった。
- 参考スコア(独自算出の注目度): 1.2074552857379273
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper reports a CPU-level real-time stereo matching method for surgical
images (10 Hz on 640 * 480 image with a single core of i5-9400). The proposed
method is built on the fast ''dense inverse searching'' algorithm, which
estimates the disparity of the stereo images. The overlapping image patches
(arbitrary squared image segment) from the images at different scales are
aligned based on the photometric consistency presumption. We propose a Bayesian
framework to evaluate the probability of the optimized patch disparity at
different scales. Moreover, we introduce a spatial Gaussian mixed probability
distribution to address the pixel-wise probability within the patch. In-vivo
and synthetic experiments show that our method can handle ambiguities resulted
from the textureless surfaces and the photometric inconsistency caused by the
Lambertian reflectance. Our Bayesian method correctly balances the probability
of the patch for stereo images at different scales. Experiments indicate that
the estimated depth has higher accuracy and fewer outliers than the baseline
methods in the surgical scenario.
- Abstract(参考訳): 手術画像のCPUレベルリアルタイムステレオマッチング手法について報告する(i5-9400のコアが1つある640×480画像の10Hz)。
提案手法は,ステレオ画像の差分を推定する高速な'dense inverse search'アルゴリズムに基づいて構築される。
異なるスケールの画像からの重なり合う画像パッチ(arbitrary squared image segment)は、測光一貫性推定に基づいて整列される。
異なるスケールで最適化されたパッチ格差の確率を評価するベイズフレームワークを提案する。
さらに,パッチ内の画素方向確率に対処するため,空間的ガウス混合確率分布を導入する。
In-vivo and synthetic experiment shows that our method can handle ambiguities from the textureless surfaces and the photometric inconsistency caused by the Lambertian reflectance。
ベイズ法はステレオ画像に対するパッチの確率を異なるスケールで正確にバランスさせる。
実験の結果, 推定深さは手術シナリオのベースライン法よりも精度が高く, 外れ値が少ないことが示唆された。
関連論文リスト
- Do Bayesian imaging methods report trustworthy probabilities? [0.18434042562191813]
我々は,5つの標準ベイズイメージング手法の精度を調査するために,1000GPU時間を要する大規模な実験を行った。
いくつかのケースでは、現代のベイズ画像技術によって報告された確率は、長期的な平均値と広く一致している。
既存のベイズ画像法では、信頼性の高い不確実な定量化結果が得られないのが一般的である。
論文 参考訳(メタデータ) (2024-05-13T20:57:01Z) - Learning from small data sets: Patch-based regularizers in inverse
problems for image reconstruction [1.1650821883155187]
機械学習の最近の進歩は、ネットワークを訓練するために大量のデータとコンピュータ能力を必要とする。
本稿は,ごく少数の画像のパッチを考慮に入れることで,小さなデータセットから学習する問題に対処する。
本稿では,Langevin Monte Carlo法を用いて後部を近似することにより,不確実な定量化を実現する方法を示す。
論文 参考訳(メタデータ) (2023-12-27T15:30:05Z) - Deep Richardson-Lucy Deconvolution for Low-Light Image Deblurring [48.80983873199214]
我々は,飽和画素を学習潜時マップでモデル化するデータ駆動型手法を開発した。
新しいモデルに基づいて、非盲検除色タスクを最大後部(MAP)問題に定式化することができる。
増幅されたアーティファクトを使わずに高品質な劣化画像を推定するために,我々は事前推定ネットワークを構築した。
論文 参考訳(メタデータ) (2023-08-10T12:53:30Z) - Probabilistic Deep Metric Learning for Hyperspectral Image
Classification [91.5747859691553]
本稿では,ハイパースペクトル画像分類のための確率論的深度学習フレームワークを提案する。
ハイパースペクトルセンサーが捉えた画像に対して、各ピクセルのカテゴリを予測することを目的としている。
我々のフレームワークは、既存のハイパースペクトル画像分類法に容易に適用できる。
論文 参考訳(メタデータ) (2022-11-15T17:57:12Z) - Deep Uncalibrated Photometric Stereo via Inter-Intra Image Feature
Fusion [17.686973510425172]
本稿では, 深部非校正光度ステレオの新しい手法を提案する。
画像間表現を効率的に利用し、正規推定を導出する。
本手法は, 合成データと実データの両方において, 最先端の手法よりも有意に優れた結果が得られる。
論文 参考訳(メタデータ) (2022-08-06T03:59:54Z) - BDIS: Bayesian Dense Inverse Searching Method for Real-Time Stereo
Surgical Image Matching [2.990820994368054]
本稿では,一般的なMISタスクに対して,CPUレベルの事前自由ステレオマッチングアルゴリズムを提案する。
手術画像用のシングルコアCPU (i5-9400) を用いて, 640*480の画像に対して平均17Hzを実現する。
MIS のベースライン ELAS よりも近いか高い精度で出力が小さいが、4-5倍高速である。
論文 参考訳(メタデータ) (2022-05-06T10:50:49Z) - Deblurring via Stochastic Refinement [85.42730934561101]
条件付き拡散モデルに基づくブラインドデブロアリングのための代替フレームワークを提案する。
提案手法は,PSNRなどの歪み指標の点で競合する。
論文 参考訳(メタデータ) (2021-12-05T04:36:09Z) - Feature Space Targeted Attacks by Statistic Alignment [74.40447383387574]
特徴空間ターゲットは、中間特徴写像を変調して摂動画像を攻撃する。
画素ワイドユークリッド距離の現在の選択は、ソースとターゲットの特徴に不合理に空間整合性制約を課すため、不一致を測定することが疑問視されている。
本稿では,Pair-wise Alignment AttackとGlobal-wise Alignment Attackという2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2021-05-25T03:46:39Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
各トレーニングイメージのマルチスケールパッチ分布をキャプチャする階層的生成モデルを開発した。
この異常スコアは、スケール及び画像領域にわたる正しい変換のパッチベースの投票を集約して得られる。
論文 参考訳(メタデータ) (2021-04-29T17:49:48Z) - Efficient and Differentiable Shadow Computation for Inverse Problems [64.70468076488419]
微分可能幾何計算は画像に基づく逆問題に対する関心が高まっている。
微分可能な可視性とソフトシャドウ計算のための効率的かつ効率的なアプローチを提案する。
定式化は微分可能であるため, テクスチャ, 照明, 剛体ポーズ, 画像からの変形回復などの逆問題を解くために使用できる。
論文 参考訳(メタデータ) (2021-04-01T09:29:05Z) - The Maximum Entropy on the Mean Method for Image Deblurring [4.4518351404598375]
Image deblurringは、不適切な逆問題として悪名高い。
本稿では、画像空間上の確率分布のレベルにおいて、正規化に向けてパラダイムをシフトする別のアプローチを提案する。
本手法は,画像の確率密度関数のレベルで作業する平均エントロピーの最大値に基づく。
論文 参考訳(メタデータ) (2020-02-24T18:30:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。