論文の概要: Efficient Black-Box Importance Sampling for VaR and CVaR Estimation
- arxiv url: http://arxiv.org/abs/2106.10236v1
- Date: Wed, 16 Jun 2021 01:29:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-22 04:37:00.693183
- Title: Efficient Black-Box Importance Sampling for VaR and CVaR Estimation
- Title(参考訳): VaRとCVaR推定のための効率的なブラックボックス重要度サンプリング
- Authors: Anand Deo, Karthyek Murthy
- Abstract要約: 本稿では,機械学習機能マップなどの高度なオブジェクトから定義された損失のテールリスクを推定するためのImportance Smpling(IS)について考察する。
本稿では,リスクにおける価値とリスクにおける条件的価値を推定するための効率的なISを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper considers Importance Sampling (IS) for the estimation of tail
risks of a loss defined in terms of a sophisticated object such as a machine
learning feature map or a mixed integer linear optimisation formulation.
Assuming only black-box access to the loss and the distribution of the
underlying random vector, the paper presents an efficient IS algorithm for
estimating the Value at Risk and Conditional Value at Risk. The key challenge
in any IS procedure, namely, identifying an appropriate change-of-measure, is
automated with a self-structuring IS transformation that learns and replicates
the concentration properties of the conditional excess from less rare samples.
The resulting estimators enjoy asymptotically optimal variance reduction when
viewed in the logarithmic scale. Simulation experiments highlight the efficacy
and practicality of the proposed scheme
- Abstract(参考訳): 本稿では,機械学習特徴マップや混合整数線形最適化定式化といった高度なオブジェクトを用いて,損失のテールリスクを推定するための重要サンプリング(is)について検討する。
損失に対するブラックボックスアクセスと、基礎となるランダムベクトルの分布のみを仮定し、リスクのリスク値とリスクの条件値を推定する効率的なisアルゴリズムを提案する。
適切な測定方法の変更を特定することにおける重要な課題は、希少な試料から条件過剰の濃度特性を学習し、複製する自己構造化IS変換によって自動化される。
得られた推定者は対数スケールで見たとき漸近的に最適な分散還元を享受する。
提案手法の有効性と実用性に着目したシミュレーション実験
関連論文リスト
- Distributionally Robust Optimization as a Scalable Framework to Characterize Extreme Value Distributions [22.765095010254118]
本研究の目的は分散ロバストな最適化 (DRO) 推定器の開発であり、特に多次元極値理論 (EVT) の統計量についてである。
点過程の空間における半パラメトリックな最大安定制約によって予測されるDRO推定器について検討した。
両手法は, 合成データを用いて検証し, 所定の特性を回復し, 提案手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-07-31T19:45:27Z) - A Universal Class of Sharpness-Aware Minimization Algorithms [57.29207151446387]
我々は、新しいシャープネス尺度を導入し、新しいシャープネス対応目標関数を導出する。
これらの測度がテキスト的に表現可能であることを証明し、トレーニング損失ヘッセン行列の任意の関数を適切なハイパーおよび行列式で表すことを可能にする。
論文 参考訳(メタデータ) (2024-06-06T01:52:09Z) - Risk-averse Learning with Non-Stationary Distributions [18.15046585146849]
本稿では,ランダムなコスト分布が時間とともに変化するリスク-逆オンライン最適化について検討する。
リスクの条件値(CVaR)をリスク尺度として用いたリスク逆目的関数を最小化する。
設計した学習アルゴリズムは,凸関数と凸関数の両方に対して高い確率で線形動的後悔を実現する。
論文 参考訳(メタデータ) (2024-04-03T18:16:47Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
冗長な手法を排除し、単純で効率的なシェープリー推定器SimSHAPを提案する。
既存手法の解析において、推定器は特徴部分集合からランダムに要約された値の線形変換として統一可能であることを観察する。
実験により,SimSHAPの有効性が検証され,精度の高いShapley値の計算が大幅に高速化された。
論文 参考訳(メタデータ) (2023-11-02T06:09:24Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
ラベルなしデータセットを、効率的な自己教師付き学習(SSL)のための小さな合成サンプル群に蒸留する新しい問題を提案する。
両レベル最適化におけるSSL目標に対する合成サンプルの勾配は、データ拡張やマスキングから生じるランダム性から、テキストバイアスを受けていることを最初に証明する。
転送学習を含む様々な応用における本手法の有効性を実証的に検証する。
論文 参考訳(メタデータ) (2023-10-10T10:48:52Z) - Training Discrete Deep Generative Models via Gapped Straight-Through
Estimator [72.71398034617607]
再サンプリングのオーバーヘッドを伴わずに分散を低減するため, GST (Gapped Straight-Through) 推定器を提案する。
この推定子は、Straight-Through Gumbel-Softmaxの本質的な性質に着想を得たものである。
実験により,提案したGST推定器は,2つの離散的な深部生成モデリングタスクの強いベースラインと比較して,優れた性能を享受できることが示された。
論文 参考訳(メタデータ) (2022-06-15T01:46:05Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - Achieving Efficiency in Black Box Simulation of Distribution Tails with
Self-structuring Importance Samplers [1.6114012813668934]
本稿では,線形プログラムや整数線形プログラム,ピースワイド線形・二次目的,ディープニューラルネットワークで指定された特徴マップなど,多種多様なツールでモデル化されたパフォーマンス指標の分布を推定する,新しいImportance Smpling(IS)方式を提案する。
論文 参考訳(メタデータ) (2021-02-14T03:37:22Z) - Active Deep Learning on Entity Resolution by Risk Sampling [5.219701379581547]
アクティブラーニング(al)は、モデルトレーニングに有用なデータに焦点を当てた、実現可能なソリューションである。
実体解決のためのリスクサンプリング(ER)の新たなALアプローチを提案する。
ALのコアセット特性に基づいて、非一様連続性によるコアセット損失を最小限に抑える最適化モデルを理論的に導出する。
実データに対する提案手法の有効性を比較検討により実証的に検証した。
論文 参考訳(メタデータ) (2020-12-23T20:38:25Z) - Localized Debiased Machine Learning: Efficient Inference on Quantile
Treatment Effects and Beyond [69.83813153444115]
因果推論における(局所)量子化処理効果((L)QTE)の効率的な推定式を検討する。
Debiased Machine Learning (DML)は、高次元のニュアンスを推定するデータ分割手法である。
本稿では、この負担のかかるステップを避けるために、局所的脱バイアス機械学習(LDML)を提案する。
論文 参考訳(メタデータ) (2019-12-30T14:42:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。