The Perturbed Ferromagnetic Chain: A Tuneable Test of Quantum Hardness
in the Transverse-Field Ising Model
- URL: http://arxiv.org/abs/2106.11019v3
- Date: Thu, 2 Dec 2021 13:41:05 GMT
- Title: The Perturbed Ferromagnetic Chain: A Tuneable Test of Quantum Hardness
in the Transverse-Field Ising Model
- Authors: Daniel O'Connor, Louis Fry-Bouriaux, Paul Warburton
- Abstract summary: We discuss whether quantum systems in the presence of decoherence are more useful than those using classical dynamics to drive computation.
We introduce the perturbedmagnetic chain (PFC), a chain of frustrated sub-systems where the degree of frustration scales inversely with the perturbation introduced by a tunable parameter.
We demonstrate that SVMC methods get trapped in the exponentially large first-excited-state manifold when solving this frustrated problem, whereas evolution using quantum dynamics remains in the lowest energy eigenstates.
- Score: 0.6445605125467572
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum annealing in the transverse-field Ising model (TFIM) with open-system
dynamics is known to use thermally-assisted tunneling to drive computation.
However, it is still subject to debate whether quantum systems in the presence
of decoherence are more useful than those using classical dynamics to drive
computation. We contribute to this debate by introducing the perturbed
ferromagnetic chain (PFC), a chain of frustrated sub-systems where the degree
of frustration scales inversely with the perturbation introduced by a tunable
parameter. This gives us an easily embeddable gadget whereby problem hardness
can be tuned for systems of constant size. We outline the properties of the PFC
and compare classical spin-vector Monte Carlo (SVMC) variants with the
adiabatic quantum master equation. We demonstrate that SVMC methods get trapped
in the exponentially large first-excited-state manifold when solving this
frustrated problem, whereas evolution using quantum dynamics remains in the
lowest energy eigenstates. This results in significant differences in ground
state probability when using either classical or quantum annealing dynamics in
the TFIM.
Related papers
- Computational supremacy in quantum simulation [22.596358764113624]
We show that superconducting quantum annealing processors can generate samples in close agreement with solutions of the Schr"odinger equation.
We conclude that no known approach can achieve the same accuracy as the quantum annealer within a reasonable timeframe.
arXiv Detail & Related papers (2024-03-01T19:00:04Z) - Wasserstein Quantum Monte Carlo: A Novel Approach for Solving the
Quantum Many-Body Schr\"odinger Equation [56.9919517199927]
"Wasserstein Quantum Monte Carlo" (WQMC) uses the gradient flow induced by the Wasserstein metric, rather than Fisher-Rao metric, and corresponds to transporting the probability mass, rather than teleporting it.
We demonstrate empirically that the dynamics of WQMC results in faster convergence to the ground state of molecular systems.
arXiv Detail & Related papers (2023-07-06T17:54:08Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Revealing microcanonical phase diagrams of strongly correlated systems
via time-averaged classical shadows [0.0]
We propose a method to study microcanonical phases and phase transitions on a quantum computer from quantum dynamics.
We first show that this method, applied to ground state calculations on 100 qubit systems, discovers the geometric relationship between magnetization and field.
We then show that diffusion maps of TACS data from quantum dynamics simulations efficiently learn the phase-defining features and correctly identify the quantum critical region.
arXiv Detail & Related papers (2022-11-02T16:39:52Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Directly Revealing Entanglement Dynamics through Quantum Correlation
Transfer Functions with Resultant Demonstration of the Mechanism of Many-Body
Localization [0.0]
This paper introduces the Quantum Correlation Transfer Function (QCTF) approach to entanglement dynamics in many-body quantum systems.
We show that QCTF can be fully characterized directly from the system's Hamiltonian, which circumvents the bottleneck of calculating the many-body system's time-evolution.
We also show that QCTF provides a new foundation to study the Eigenstate Thermalization Hypothesis (ETH)
arXiv Detail & Related papers (2022-01-26T22:50:04Z) - Quantum computing for classical problems: Variational Quantum
Eigensolver for activated processes [0.0]
This paper reports the development and implementation of a Variational Quantum Eigensolver procedure to solve the Fokker-Planck-Smoluchowski eigenvalue problem.
We show that such an algorithm, typically adopted to address quantum chemistry problems, can be applied effectively to classical systems paving the way to new applications of quantum computers.
arXiv Detail & Related papers (2021-07-27T18:16:16Z) - Stark many-body localization on a superconducting quantum processor [10.67740744008533]
We build a quantum device composed of thirty-two superconducting qubits, faithfully reproducing the relaxation dynamics of a non-integrable spin model.
Our results describe the real-time evolution at sizes that surpass what is currently attainable by exact simulations in classical computers.
arXiv Detail & Related papers (2020-11-27T18:37:01Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.