論文の概要: Fixed points of monotonic and (weakly) scalable neural networks
- arxiv url: http://arxiv.org/abs/2106.16239v2
- Date: Thu, 1 Jul 2021 15:29:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-03 05:00:10.283006
- Title: Fixed points of monotonic and (weakly) scalable neural networks
- Title(参考訳): モノトニックで(弱く)スケーラブルなニューラルネットワークの固定点
- Authors: Tomasz Piotrowski and Renato L. G. Cavalcante
- Abstract要約: 非負の入力と非負のネットワークパラメータを持つネットワークは、モノトニックかつ(弱く)スケーラブルな関数として認識できることを示す。
モノトニックかつ弱い拡張性を持つニューラルネットワークの固定点集合の形状は、しばしば間隔であり、拡張性のあるネットワークの場合の点に縮退する。
- 参考スコア(独自算出の注目度): 16.244541005112747
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We derive conditions for the existence of fixed points of neural networks, an
important research objective to understand their behavior in modern
applications involving autoencoders and loop unrolling techniques, among
others. In particular, we focus on networks with nonnegative inputs and
nonnegative network parameters, as often considered in the literature. We show
that such networks can be recognized as monotonic and (weakly) scalable
functions within the framework of nonlinear Perron-Frobenius theory. This fact
enables us to derive conditions for the existence of a nonempty fixed point set
of the neural networks, and these conditions are weaker than those obtained
recently using arguments in convex analysis, which are typically based on the
assumption of nonexpansivity of the activation functions. Furthermore, we prove
that the shape of the fixed point set of monotonic and weakly scalable neural
networks is often an interval, which degenerates to a point for the case of
scalable networks. The chief results of this paper are verified in numerical
simulations, where we consider an autoencoder-type network that first
compresses angular power spectra in massive MIMO systems, and, second,
reconstruct the input spectra from the compressed signal.
- Abstract(参考訳): ニューラルネットワークの固定点の存在条件を導出し、オートエンコーダやループアンロール技術を含む現代のアプリケーションにおいて、その動作を理解するための重要な研究目的である。
特に、文献でよく見られるように、非負の入力と非負のネットワークパラメータを持つネットワークに焦点を当てる。
このようなネットワークは、非線形ペロン・フロベニウス理論の枠組みの中で単調かつ(弱く)スケーラブルな関数として認識できることを示す。
この事実により、ニューラルネットワークの空でない固定点集合の存在の条件を導出することができ、これらの条件は、一般に活性化関数の非指数性の仮定に基づく凸解析において最近得られた条件よりも弱い。
さらに,モノトニックかつ弱スケーラブルなニューラルネットワークの不動点集合の形状は,しばしば間隔であり,スケーラブルネットワークの場合の一点に縮退する。
本研究の主な結果は数値シミュレーションで検証され,大容量MIMOシステムにおいてまず角電力スペクトルを圧縮するオートエンコーダ型ネットワークと,圧縮信号から入力スペクトルを再構成する手法について考察する。
関連論文リスト
- Non Commutative Convolutional Signal Models in Neural Networks:
Stability to Small Deformations [111.27636893711055]
非可換畳み込みフィルタのフィルタ特性と安定性について検討する。
この結果は,グループニューラルネットワーク,マルチグラフニューラルネットワーク,四元系ニューラルネットワークに直接影響する。
論文 参考訳(メタデータ) (2023-10-05T20:27:22Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - Fixed Points of Cone Mapping with the Application to Neural Networks [1.0660480034605242]
関数のスケーラビリティを仮定することなく、コーン写像の固定点の存在条件を導出する。
特定の非負のデータの場合、写像が非負であれば、非負の重みしか持たないとは言い切れない。
論文 参考訳(メタデータ) (2022-07-20T14:43:45Z) - Variational Neural Networks [88.24021148516319]
本稿では,変分ニューラルネットワーク(VNN)と呼ばれるニューラルネットワークにおける不確実性推定手法を提案する。
VNNは、学習可能なサブレイヤで入力を変換することで、レイヤの出力分布のパラメータを生成する。
不確実性評価実験において、VNNはモンテカルロ・ドロップアウトやベイズ・バイ・バックプロパゲーション法よりも優れた不確実性が得られることを示す。
論文 参考訳(メタデータ) (2022-07-04T15:41:02Z) - Consistency of Neural Networks with Regularization [0.0]
本稿では,ニューラルネットワークの規則化による一般的な枠組みを提案し,その一貫性を実証する。
双曲関数(Tanh)と整形線形単位(ReLU)の2種類の活性化関数が検討されている。
論文 参考訳(メタデータ) (2022-06-22T23:33:39Z) - Benign Overfitting in Two-layer Convolutional Neural Networks [90.75603889605043]
2層畳み込みニューラルネットワーク(CNN)の訓練における良性過剰適合現象の検討
信号対雑音比が一定の条件を満たすと、勾配降下により訓練された2層CNNが任意に小さな訓練と試験損失を達成できることを示す。
一方、この条件が保たない場合、オーバーフィッティングは有害となり、得られたCNNは一定レベルのテスト損失しか達成できない。
論文 参考訳(メタデータ) (2022-02-14T07:45:51Z) - Convolutional Filtering and Neural Networks with Non Commutative
Algebras [153.20329791008095]
本研究では,非可換畳み込みニューラルネットワークの一般化について検討する。
非可換畳み込み構造は作用素空間上の変形に対して安定であることを示す。
論文 参考訳(メタデータ) (2021-08-23T04:22:58Z) - The Compact Support Neural Network [6.47243430672461]
本研究では, 標準ドット生成物に基づくニューロンとRBFニューロンを, 形状パラメータの2つの極端な場合として提示する。
トレーニングされた標準ニューラルネットワークから始めて、必要な値まで形状パラメータを徐々に増加させることで、そのようなニューロンによるニューラルネットワークのトレーニングの難しさを回避する方法を示す。
論文 参考訳(メタデータ) (2021-04-01T06:08:09Z) - Neural Networks with Recurrent Generative Feedback [61.90658210112138]
畳み込みニューラルネットワーク(CNN)でこの設計をインスタンス化する
実験では、標準ベンチマーク上の従来のフィードフォワードCNNに対して、CNN-Fは敵のロバスト性を大幅に改善した。
論文 参考訳(メタデータ) (2020-07-17T19:32:48Z) - Bayesian Neural Networks [0.0]
ニューラルネットワークによる予測におけるエラーを原理的に得る方法を示し、これらのエラーを特徴付ける2つの方法を提案する。
さらに、これらの2つのメソッドが実際に実施される際に、重大な落とし穴を持つ方法についても説明します。
論文 参考訳(メタデータ) (2020-06-02T09:43:00Z) - Avoiding Spurious Local Minima in Deep Quadratic Networks [0.0]
ニューラルアクティベーション機能を持つネットワークにおける平均2乗非線形誤差の景観を特徴付ける。
2次アクティベーションを持つ深層ニューラルネットワークは、類似した景観特性の恩恵を受けることが証明された。
論文 参考訳(メタデータ) (2019-12-31T22:31:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。