論文の概要: GaRe: Relightable 3D Gaussian Splatting for Outdoor Scenes from Unconstrained Photo Collections
- arxiv url: http://arxiv.org/abs/2507.20512v1
- Date: Mon, 28 Jul 2025 04:29:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:57.791259
- Title: GaRe: Relightable 3D Gaussian Splatting for Outdoor Scenes from Unconstrained Photo Collections
- Title(参考訳): GaRe:制約なしの写真コレクションの屋外シーンを3Dガウスで撮影
- Authors: Haiyang Bai, Jiaqi Zhu, Songru Jiang, Wei Huang, Tao Lu, Yuanqi Li, Jie Guo, Runze Fu, Yanwen Guo, Lijun Chen,
- Abstract要約: 屋外リライトのための3次元ガウススプラッティングに基づくフレームワークを提案する。
提案手法は多様なシェーディング操作と動的シャドウ効果の同時生成を可能にする。
- 参考スコア(独自算出の注目度): 19.8966661817631
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a 3D Gaussian splatting-based framework for outdoor relighting that leverages intrinsic image decomposition to precisely integrate sunlight, sky radiance, and indirect lighting from unconstrained photo collections. Unlike prior methods that compress the per-image global illumination into a single latent vector, our approach enables simultaneously diverse shading manipulation and the generation of dynamic shadow effects. This is achieved through three key innovations: (1) a residual-based sun visibility extraction method to accurately separate direct sunlight effects, (2) a region-based supervision framework with a structural consistency loss for physically interpretable and coherent illumination decomposition, and (3) a ray-tracing-based technique for realistic shadow simulation. Extensive experiments demonstrate that our framework synthesizes novel views with competitive fidelity against state-of-the-art relighting solutions and produces more natural and multifaceted illumination and shadow effects.
- Abstract(参考訳): 日光, 空放射, 間接光を正確に統合するために, 固有画像分解を利用した屋外照明のための3次元ガウススプラッティング方式のフレームワークを提案する。
画像ごとのグローバル照明を1つの潜在ベクトルに圧縮する従来の方法とは異なり、本手法は同時に多様なシェーディング操作と動的シャドウ効果の生成を可能にする。
これは,(1)直射日光効果を正確に分離する残射日光可視抽出法,(2)物理的に解釈可能でコヒーレントな照明分解のための構造的整合性を損なう地域ベースの監視フレームワーク,(3)現実的な影シミュレーションのためのレイトレーシングに基づく技術,の3つの重要な革新によって達成される。
大規模な実験により、我々のフレームワークは、最先端のリライトソリューションに対する競争力のある新しいビューを合成し、より自然で多面的な照明効果とシャドウ効果を生み出すことが示された。
関連論文リスト
- GI-GS: Global Illumination Decomposition on Gaussian Splatting for Inverse Rendering [6.820642721852439]
GI-GSは3次元ガウススティング(3DGS)と遅延シェーディングを利用する新しい逆レンダリングフレームワークである。
筆者らのフレームワークでは,まずGバッファを描画し,シーンの詳細な形状と材料特性を捉える。
Gバッファと以前のレンダリング結果により、ライトウェイトパストレースにより間接照明を計算することができる。
論文 参考訳(メタデータ) (2024-10-03T15:58:18Z) - MetaGS: A Meta-Learned Gaussian-Phong Model for Out-of-Distribution 3D Scene Relighting [63.5925701087252]
アウト・オブ・ディストリビューション(OOD) 3Dリライティングは、目に見えない照明条件下での新しいビュー合成を必要とする。
この課題に対処するためにMetaGSを2つの視点から紹介する。
論文 参考訳(メタデータ) (2024-05-31T13:48:54Z) - Relightable 3D Gaussians: Realistic Point Cloud Relighting with BRDF Decomposition and Ray Tracing [21.498078188364566]
フォトリアリスティックなリライトを実現するために,新しい微分可能な点ベースレンダリングフレームワークを提案する。
提案したフレームワークは、メッシュベースのグラフィクスパイプラインを、編集、トレース、リライトを可能にするポイントベースのパイプラインで革新する可能性を示している。
論文 参考訳(メタデータ) (2023-11-27T18:07:58Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
テンソルIRはテンソル分解とニューラルフィールドに基づく新しい逆レンダリング手法である。
TensoRFは、放射場モデリングのための最先端のアプローチである。
論文 参考訳(メタデータ) (2023-04-24T21:39:13Z) - Neural Fields meet Explicit Geometric Representation for Inverse
Rendering of Urban Scenes [62.769186261245416]
本稿では,大都市におけるシーン形状,空間変化材料,HDR照明を,任意の深さで描画したRGB画像の集合から共同で再構成できる新しい逆レンダリングフレームワークを提案する。
具体的には、第1の光線を考慮に入れ、第2の光線をモデリングするために、明示的なメッシュ(基礎となるニューラルネットワークから再構成)を用いて、キャストシャドウのような高次照明効果を発生させる。
論文 参考訳(メタデータ) (2023-04-06T17:51:54Z) - Physically-Based Editing of Indoor Scene Lighting from a Single Image [106.60252793395104]
本研究では,1つの画像から複雑な室内照明を推定深度と光源セグメンテーションマスクで編集する手法を提案する。
1)シーン反射率とパラメトリックな3D照明を推定する全体的シーン再構成法,2)予測からシーンを再レンダリングするニューラルレンダリングフレームワーク,である。
論文 参考訳(メタデータ) (2022-05-19T06:44:37Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
そこで本研究では,単体画像から固有物体特性を推定する難題について,微分可能量を用いて検討する。
そこで本研究では、スペクトル化とレイトレーシングを組み合わせることで、これらの効果をサポートするハイブリッド微分可能なDIBR++を提案する。
より高度な物理ベースの微分可能値と比較すると、DIBR++はコンパクトで表現力のあるモデルであるため、高い性能を持つ。
論文 参考訳(メタデータ) (2021-10-30T01:59:39Z) - Intrinsic Image Transfer for Illumination Manipulation [1.2387676601792899]
本稿では,照明操作のための固有画像転送(IIT)アルゴリズムを提案する。
2つの照明面間の局所的な画像変換を生成する。
本報告では,本質的な画像分解を行うことなく,全ての損失を低減できることを示す。
論文 参考訳(メタデータ) (2021-07-01T19:12:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。