論文の概要: High-Speed CMOS-Free Purely Spintronic Asynchronous Recurrent Neural
Network
- arxiv url: http://arxiv.org/abs/2107.02238v2
- Date: Sat, 1 Oct 2022 00:15:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-23 08:49:13.759317
- Title: High-Speed CMOS-Free Purely Spintronic Asynchronous Recurrent Neural
Network
- Title(参考訳): 高速cmosフリー純スピントロニクス非同期リカレントニューラルネットワーク
- Authors: Pranav O. Mathews and Christian B. Duffee and Abel Thayil and Ty E.
Stovall and Christopher H. Bennett and Felipe Garcia-Sanchez and Matthew J.
Marinella and Jean Anne C. Incorvia and Naimul Hassan and Xuan Hu and Joseph
S. Friedman
- Abstract要約: ニューロモルフィックコンピューティングシステムは、伝統的なフォン・ノイマン計算アーキテクチャの限界を克服する。
近年の研究では、様々なニューラルネットワーク設計におけるメムリスタやスピントロニクスデバイスが効率と速度を高めることが示されている。
本稿では、完全スピントロニクスホップフィールドRNNで用いられる、生物学的にインスパイアされた完全スピントロニクスニューロンについて述べる。
- 参考スコア(独自算出の注目度): 1.1965429476528429
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neuromorphic computing systems overcome the limitations of traditional von
Neumann computing architectures. These computing systems can be further
improved upon by using emerging technologies that are more efficient than CMOS
for neural computation. Recent research has demonstrated memristors and
spintronic devices in various neural network designs boost efficiency and
speed. This paper presents a biologically inspired fully spintronic neuron used
in a fully spintronic Hopfield RNN. The network is used to solve tasks, and the
results are compared against those of current Hopfield neuromorphic
architectures which use emerging technologies.
- Abstract(参考訳): ニューロモルフィックコンピューティングシステムは、伝統的なフォン・ノイマン計算アーキテクチャの限界を克服する。
これらの計算システムは、神経計算にcmosよりも効率的な新興技術を使用することにより、さらに改善することができる。
近年の研究では、様々なニューラルネットワーク設計におけるメムリスタやスピントロニクスデバイスが効率と速度を高めることが示されている。
本稿では、完全スピントロニクスホップフィールドRNNで用いられる、生物学的にインスパイアされた完全スピントロニクスニューロンについて述べる。
このネットワークはタスクを解くために使用され、その結果は新興技術を使用する現在のホプフィールドニューロモルフィックアーキテクチャと比較される。
関連論文リスト
- Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
我々はこれらのシナプス機能を本質的にエミュレートするSrTiO3に基づく膜状ナノデバイスを実証する。
これらのメムリスタは、安定かつエネルギー効率の良い運転を可能にする非定常低導電系で機能する。
論文 参考訳(メタデータ) (2024-02-26T15:01:54Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Astrocyte-Integrated Dynamic Function Exchange in Spiking Neural
Networks [0.0]
本稿では,スパイキングニューラルネットワーク(SNN)の堅牢性と計算効率を向上させるための革新的な手法を提案する。
提案手法はヒト脳に広く分布するグリア細胞であるアストロサイトをSNNに統合し、アストロサイトを増強したネットワークを形成する。
特に、アストロサイトを拡張したSNNは、ほぼゼロのレイテンシと理論上無限のスループットを示し、計算効率が極めて高いことを示唆している。
論文 参考訳(メタデータ) (2023-09-15T08:02:29Z) - Computational and Storage Efficient Quadratic Neurons for Deep Neural
Networks [10.379191500493503]
実験により、提案した二次ニューロン構造は、様々なタスクにおいて優れた計算効率と記憶効率を示すことが示された。
本研究は、2次計算情報の高度活用によって区別される2次ニューロンアーキテクチャを導入する。
論文 参考訳(メタデータ) (2023-06-10T11:25:31Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
フォン・ノイマンアーキテクチャと古典的ニューラルネットワークに基づく現代のAIシステムは、脳と比較して多くの基本的な制限がある。
この記事では、そのような制限と、それらが緩和される方法について論じる。
これは、これらの制限が克服されている現在利用可能なニューロモーフィックAIプロジェクトの概要を示す。
論文 参考訳(メタデータ) (2022-05-25T20:16:05Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - Ultra-Low-Power FDSOI Neural Circuits for Extreme-Edge Neuromorphic
Intelligence [2.6199663901387997]
インメモリコンピューティング 混合信号ニューロモルフィックアーキテクチャはエッジコンピューティングのセンサ処理への応用に期待できる超低消費電力のソリューションを提供する。
本稿では、FDSOI(Fully-Depleted Silicon on Insulator)統合プロセスの特徴を利用する混合信号アナログ/デジタル回路を提案する。
論文 参考訳(メタデータ) (2020-06-25T09:31:29Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
我々は, プレ・グポストシナプスのパートナーを常に切り替えることにより, 構造的可塑性を達成するための戦略を提案する。
我々はこのアルゴリズムをアナログニューロモルフィックシステムBrainScaleS-2に実装した。
ネットワークトポロジを最適化する能力を示し、簡単な教師付き学習シナリオで実装を評価した。
論文 参考訳(メタデータ) (2019-12-27T10:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。